5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Salt sensitivity and its implication in clinical practice

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Hypertension (HTN) is a complex multi-factorial disease and is considered one of the foremost modifiable risk factors for stroke, heart failure, ischemic heart disease and renal dysfunction. Over the past century, salt and its linkage to HTN and cardiovascular (CV) mortality has been the subject of intense scientific scrutiny. There is now consensus that different individuals have different susceptibilities to blood pressure (BP)-raising effects of salt and this susceptiveness is called as salt sensitivity. Several renal and extra-renal mechanisms are believed to play a role. Blunted activity of the renin–angiotensin–aldosterone system (RAAS), adrenal Rac1-MR-Sgk1-NCC/ENaC pathway, renal SNS-GR-WNK4-NCC pathway, defect of membrane ion transportation, inflammation and abnormalities of Na +/Ca 2+ exchange have all been implicated as pathophysiological basis for salt sensitive HTN. While salt restriction is definitely beneficial recent observation suggests that treatment with Azilsartan may improve salt sensitivity by selectively reducing renal proximal tubule Na +/H + exchange. This encourages the future potential benefits of recognizing and therapeutically addressing the salt sensitive phenotype in humans.

          Related collections

          Most cited references84

          • Record: found
          • Abstract: found
          • Article: not found

          The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine.

          Despite its very potent vasodilating action in vivo, acetylcholine (ACh) does not always produce relaxation of isolated preparations of blood vessels in vitro. For example, in the helical strip of the rabbit descending thoracic aorta, the only reported response to ACh has been graded contractions, occurring at concentrations above 0.1 muM and mediated by muscarinic receptors. Recently, we observed that in a ring preparation from the rabbit thoracic aorta, ACh produced marked relaxation at concentrations lower than those required to produce contraction (confirming an earlier report by Jelliffe). In investigating this apparent discrepancy, we discovered that the loss of relaxation of ACh in the case of the strip was the result of unintentional rubbing of its intimal surface against foreign surfaces during its preparation. If care was taken to avoid rubbing of the intimal surface during preparation, the tissue, whether ring, transverse strip or helical strip, always exhibited relaxation to ACh, and the possibility was considered that rubbing of the intimal surface had removed endothelial cells. We demonstrate here that relaxation of isolated preparations of rabbit thoracic aorta and other blood vessels by ACh requires the presence of endothelial cells, and that ACh, acting on muscarinic receptors of these cells, stimulates release of a substance(s) that causes relaxation of the vascular smooth muscle. We propose that this may be one of the principal mechanisms for ACh-induced vasodilation in vivo. Preliminary reports on some aspects of the work have been reported elsewhere.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Molecular mechanisms of human hypertension.

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Immune cells control skin lymphatic electrolyte homeostasis and blood pressure.

              The skin interstitium sequesters excess Na+ and Cl- in salt-sensitive hypertension. Mononuclear phagocyte system (MPS) cells are recruited to the skin, sense the hypertonic electrolyte accumulation in skin, and activate the tonicity-responsive enhancer-binding protein (TONEBP, also known as NFAT5) to initiate expression and secretion of VEGFC, which enhances electrolyte clearance via cutaneous lymph vessels and increases eNOS expression in blood vessels. It is unclear whether this local MPS response to osmotic stress is important to systemic blood pressure control. Herein, we show that deletion of TonEBP in mouse MPS cells prevents the VEGFC response to a high-salt diet (HSD) and increases blood pressure. Additionally, an antibody that blocks the lymph-endothelial VEGFC receptor, VEGFR3, selectively inhibited MPS-driven increases in cutaneous lymphatic capillary density, led to skin Cl- accumulation, and induced salt-sensitive hypertension. Mice overexpressing soluble VEGFR3 in epidermal keratinocytes exhibited hypoplastic cutaneous lymph capillaries and increased Na+, Cl-, and water retention in skin and salt-sensitive hypertension. Further, we found that HSD elevated skin osmolality above plasma levels. These results suggest that the skin contains a hypertonic interstitial fluid compartment in which MPS cells exert homeostatic and blood pressure-regulatory control by local organization of interstitial electrolyte clearance via TONEBP and VEGFC/VEGFR3-mediated modification of cutaneous lymphatic capillary function.
                Bookmark

                Author and article information

                Contributors
                Journal
                Indian Heart J
                Indian Heart J
                Indian Heart Journal
                Elsevier
                0019-4832
                Jul-Aug 2018
                10 October 2017
                : 70
                : 4
                : 556-564
                Affiliations
                [a ]Department of Cardiology, AIIMS, New Delhi, India
                [b ]Emcure Pharmaceuticals Ltd, Pune, India
                Author notes
                [* ]Corresponding author. Shahu.Ingole@ 123456emcure.co.in
                Article
                S0019-4832(17)30428-5
                10.1016/j.ihj.2017.10.006
                6116721
                30170653
                97aca23c-bb1b-43dd-b958-451dccb21612
                © 2017 Published by Elsevier B.V. on behalf of Cardiological Society of India.

                This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

                History
                : 21 June 2017
                : 10 October 2017
                Categories
                Review Article

                hypertension,salt sensitivity,patho-physiological mechanisms,azilsartan

                Comments

                Comment on this article