26
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Transmission of multidrug-resistant tuberculosis in the UK: a cross-sectional molecular and epidemiological study of clustering and contact tracing

      Read this article at

      ScienceOpenPublisherPubMed
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Between 2000 and 2012 the number of multidrug-resistant (MDR) tuberculosis cases in the UK increased from 28 per year to 81 per year. We investigated the proportion of MDR tuberculosis cases arising from transmission in the UK and associated risk factors.

          Related collections

          Most cited references30

          • Record: found
          • Abstract: found
          • Article: not found

          Whole-genome sequencing to delineate Mycobacterium tuberculosis outbreaks: a retrospective observational study

          Summary Background Tuberculosis incidence in the UK has risen in the past decade. Disease control depends on epidemiological data, which can be difficult to obtain. Whole-genome sequencing can detect microevolution within Mycobacterium tuberculosis strains. We aimed to estimate the genetic diversity of related M tuberculosis strains in the UK Midlands and to investigate how this measurement might be used to investigate community outbreaks. Methods In a retrospective observational study, we used Illumina technology to sequence M tuberculosis genomes from an archive of frozen cultures. We characterised isolates into four groups: cross-sectional, longitudinal, household, and community. We measured pairwise nucleotide differences within hosts and between hosts in household outbreaks and estimated the rate of change in DNA sequences. We used the findings to interpret network diagrams constructed from 11 community clusters derived from mycobacterial interspersed repetitive-unit–variable-number tandem-repeat data. Findings We sequenced 390 separate isolates from 254 patients, including representatives from all five major lineages of M tuberculosis. The estimated rate of change in DNA sequences was 0·5 single nucleotide polymorphisms (SNPs) per genome per year (95% CI 0·3–0·7) in longitudinal isolates from 30 individuals and 25 families. Divergence is rarely higher than five SNPs in 3 years. 109 (96%) of 114 paired isolates from individuals and households differed by five or fewer SNPs. More than five SNPs separated isolates from none of 69 epidemiologically linked patients, two (15%) of 13 possibly linked patients, and 13 (17%) of 75 epidemiologically unlinked patients (three-way comparison exact p<0·0001). Genetic trees and clinical and epidemiological data suggest that super-spreaders were present in two community clusters. Interpretation Whole-genome sequencing can delineate outbreaks of tuberculosis and allows inference about direction of transmission between cases. The technique could identify super-spreaders and predict the existence of undiagnosed cases, potentially leading to early treatment of infectious patients and their contacts. Funding Medical Research Council, Wellcome Trust, National Institute for Health Research, and the Health Protection Agency.
            • Record: found
            • Abstract: found
            • Article: not found

            Contact investigation for tuberculosis: a systematic review and meta-analysis

            Investigation of contacts of patients with tuberculosis (TB) is a priority for TB control in high-income countries, and is increasingly being considered in resource-limited settings. This review was commissioned for a World Health Organization Expert Panel to develop global contact investigation guidelines. We performed a systematic review and meta-analysis of all studies reporting the prevalence of TB and latent TB infection, and the annual incidence of TB among contacts of patients with TB. After screening 9,555 titles, we included 203 published studies. In 95 studies from low- and middle-income settings, the prevalence of active TB in all contacts was 3.1% (95% CI 2.2–4.4%, I2=99.4%), microbiologically proven TB was 1.2% (95% CI 0.9–1.8%, I2=95.9%), and latent TB infection was 51.5% (95% CI 47.1–55.8%, I2=98.9%). The prevalence of TB among household contacts was 3.1% (95% CI 2.1–4.5%, I2=98.8%) and among contacts of patients with multidrug-resistant or extensively drug-resistant TB was 3.4% (95% CI 0.8–12.6%, I2=95.7%). Incidence was greatest in the first year after exposure. In 108 studies from high-income settings, the prevalence of TB among contacts was 1.4% (95% CI 1.1–1.8%, I2=98.7%), and the prevalence of latent infection was 28.1% (95% CI 24.2–32.4%, I2=99.5%). There was substantial heterogeneity among published studies. Contacts of TB patients are a high-risk group for developing TB, particularly within the first year. Children <5 yrs of age and people living with HIV are particularly at risk. Policy recommendations must consider evidence of the cost-effectiveness of various contact tracing strategies, and also incorporate complementary strategies to enhance case finding.
              • Record: found
              • Abstract: found
              • Article: not found

              Global phylogeny of Mycobacterium tuberculosis based on single nucleotide polymorphism (SNP) analysis: insights into tuberculosis evolution, phylogenetic accuracy of other DNA fingerprinting systems, and recommendations for a minimal standard SNP set.

              We analyzed a global collection of Mycobacterium tuberculosis strains using 212 single nucleotide polymorphism (SNP) markers. SNP nucleotide diversity was high (average across all SNPs, 0.19), and 96% of the SNP locus pairs were in complete linkage disequilibrium. Cluster analyses identified six deeply branching, phylogenetically distinct SNP cluster groups (SCGs) and five subgroups. The SCGs were strongly associated with the geographical origin of the M. tuberculosis samples and the birthplace of the human hosts. The most ancestral cluster (SCG-1) predominated in patients from the Indian subcontinent, while SCG-1 and another ancestral cluster (SCG-2) predominated in patients from East Asia, suggesting that M. tuberculosis first arose in the Indian subcontinent and spread worldwide through East Asia. Restricted SCG diversity and the prevalence of less ancestral SCGs in indigenous populations in Uganda and Mexico suggested a more recent introduction of M. tuberculosis into these regions. The East African Indian and Beijing spoligotypes were concordant with SCG-1 and SCG-2, respectively; X and Central Asian spoligotypes were also associated with one SCG or subgroup combination. Other clades had less consistent associations with SCGs. Mycobacterial interspersed repetitive unit (MIRU) analysis provided less robust phylogenetic information, and only 6 of the 12 MIRU microsatellite loci were highly differentiated between SCGs as measured by GST. Finally, an algorithm was devised to identify two minimal sets of either 45 or 6 SNPs that could be used in future investigations to enable global collaborations for studies on evolution, strain differentiation, and biological differences of M. tuberculosis.

                Author and article information

                Journal
                The Lancet Infectious Diseases
                The Lancet Infectious Diseases
                Elsevier BV
                14733099
                May 2014
                May 2014
                : 14
                : 5
                : 406-415
                Article
                10.1016/S1473-3099(14)70022-2
                24602842
                97ad1457-a7bb-4cfa-b1d3-d09d7b6657d1
                © 2014

                https://www.elsevier.com/tdm/userlicense/1.0/

                http://creativecommons.org/licenses/by-nc-nd/3.0/

                History

                Comments

                Comment on this article

                Related Documents Log