Blog
About

  • Record: found
  • Abstract: found
  • Article: found
Is Open Access

Traffic Management for Emergency Vehicle Priority Based on Visual Sensing

Read this article at

Bookmark
      There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

      Abstract

      Vehicular traffic is endlessly increasing everywhere in the world and can cause terrible traffic congestion at intersections. Most of the traffic lights today feature a fixed green light sequence, therefore the green light sequence is determined without taking the presence of the emergency vehicles into account. Therefore, emergency vehicles such as ambulances, police cars, fire engines, etc. stuck in a traffic jam and delayed in reaching their destination can lead to loss of property and valuable lives. This paper presents an approach to schedule emergency vehicles in traffic. The approach combines the measurement of the distance between the emergency vehicle and an intersection using visual sensing methods, vehicle counting and time sensitive alert transmission within the sensor network. The distance between the emergency vehicle and the intersection is calculated for comparison using Euclidean distance, Manhattan distance and Canberra distance techniques. The experimental results have shown that the Euclidean distance outperforms other distance measurement techniques. Along with visual sensing techniques to collect emergency vehicle information, it is very important to have a Medium Access Control (MAC) protocol to deliver the emergency vehicle information to the Traffic Management Center (TMC) with less delay. Then only the emergency vehicle is quickly served and can reach the destination in time. In this paper, we have also investigated the MAC layer in WSNs to prioritize the emergency vehicle data and to reduce the transmission delay for emergency messages. We have modified the medium access procedure used in standard IEEE 802.11p with PE-MAC protocol, which is a new back off selection and contention window adjustment scheme to achieve low broadcast delay for emergency messages. A VANET model for the UTMS is developed and simulated in NS-2. The performance of the standard IEEE 802.11p and the proposed PE-MAC is analysed in detail. The NS-2 simulation results have shown that the PE-MAC outperforms the IEEE 802.11p in terms of average end-to-end delay, throughput and energy consumption. The performance evaluation results have proven that the proposed PE-MAC prioritizes the emergency vehicle data and delivers the emergency messages to the TMC with less delay compared to the IEEE 802.11p. The transmission delay of the proposed PE-MAC is also compared with the standard IEEE 802.15.4, and Enhanced Back-off Selection scheme for IEEE 802.15.4 protocol [EBSS, an existing protocol to ensure fast transmission of the detected events on the road towards the TMC] and the comparative results have proven the effectiveness of the PE-MAC over them. Furthermore, this research work will provide an insight into the design of an intelligent urban traffic management system for the effective management of emergency vehicles and will help to save lives and property.

      Related collections

      Most cited references 53

      • Record: found
      • Abstract: not found
      • Article: not found

      An efficient k-means clustering algorithm: analysis and implementation

        Bookmark
        • Record: found
        • Abstract: found
        • Article: found
        Is Open Access

        The Role of Advanced Sensing in Smart Cities

        In a world where resources are scarce and urban areas consume the vast majority of these resources, it is vital to make cities greener and more sustainable. Advanced systems to improve and automate processes within a city will play a leading role in smart cities. From smart design of buildings, which capture rain water for later use, to intelligent control systems, which can monitor infrastructures autonomously, the possible improvements enabled by sensing technologies are immense. Ubiquitous sensing poses numerous challenges, which are of a technological or social nature. This paper presents an overview of the state of the art with regards to sensing in smart cities. Topics include sensing applications in smart cities, sensing platforms and technical challenges associated with these technologies. In an effort to provide a holistic view of how sensing technologies play a role in smart cities, a range of applications and technical challenges associated with these applications are discussed. As some of these applications and technologies belong to different disciplines, the material presented in this paper attempts to bridge these to provide a broad overview, which can be of help to researchers and developers in understanding how advanced sensing can play a role in smart cities.
          Bookmark
          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          A Survey on Urban Traffic Management System Using Wireless Sensor Networks

          Nowadays, the number of vehicles has increased exponentially, but the bedrock capacities of roads and transportation systems have not developed in an equivalent way to efficiently cope with the number of vehicles traveling on them. Due to this, road jamming and traffic correlated pollution have increased with the associated adverse societal and financial effect on different markets worldwide. A static control system may block emergency vehicles due to traffic jams. Wireless Sensor networks (WSNs) have gained increasing attention in traffic detection and avoiding road congestion. WSNs are very trendy due to their faster transfer of information, easy installation, less maintenance, compactness and for being less expensive compared to other network options. There has been significant research on Traffic Management Systems using WSNs to avoid congestion, ensure priority for emergency vehicles and cut the Average Waiting Time (AWT) of vehicles at intersections. In recent decades, researchers have started to monitor real-time traffic using WSNs, RFIDs, ZigBee, VANETs, Bluetooth devices, cameras and infrared signals. This paper presents a survey of current urban traffic management schemes for priority-based signalling, and reducing congestion and the AWT of vehicles. The main objective of this survey is to provide a taxonomy of different traffic management schemes used for avoiding congestion. Existing urban traffic management schemes for the avoidance of congestion and providing priority to emergency vehicles are considered and set the foundation for further research.
            Bookmark

            Author and article information

            Affiliations
            [1 ]Department of Electrical, Electronic and Computer Engineering, University of Pretoria, Pretoria 0028, South Africa; ghancke@ 123456ieee.org
            [2 ]Department of Computer Science, City University of Hong Kong, Hong Kong, China
            Author notes
            [* ]Correspondence: u15342396@ 123456tuks.co.za ; Tel.: +27-61-859-5390; Fax: +27-12-362-5000
            Contributors
            Role: Academic Editor
            Journal
            Sensors (Basel)
            Sensors (Basel)
            sensors
            Sensors (Basel, Switzerland)
            MDPI
            1424-8220
            10 November 2016
            November 2016
            : 16
            : 11
            27834924
            5134551
            10.3390/s16111892
            sensors-16-01892
            (Academic Editor)
            © 2016 by the authors; licensee MDPI, Basel, Switzerland.

            This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license ( http://creativecommons.org/licenses/by/4.0/).

            Categories
            Article
            ScienceOpen disciplines:
            Keywords:

            Comments

            Comment on this article