4
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      TNF-alpha, produced by feline infectious peritonitis virus (FIPV)-infected macrophages, upregulates expression of type II FIPV receptor feline aminopeptidase N in feline macrophages

      research-article
      , * , , ,
      Virology
      Academic Press
      FIP, ADE, TNF-alpha, fAPN

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The pathogenicity of feline infectious peritonitis virus (FIPV) is known to depend on macrophage tropism, and this macrophage infection is enhanced by mediation via anti-S antibody (antibody-dependent enhancement, ADE). In this study, we found that TNF-alpha production was increased with viral replication in macrophages inoculated with a mixture of FIPV and anti-S antibody, and demonstrated that this culture supernatant had feline PBMC apoptosis-inducing activity. We also demonstrated that the expression level of the FIPV virus receptor, feline aminopeptidase N (fAPN), was increased in macrophages of FIP cats. For upregulation of TNF-alpha and fAPN in macrophages, viral replication in macrophages is necessary, and their expressions were increased by ADE of FIPV infection. It was demonstrated that a heat-resistant fAPN-inducing factor was present in the culture supernatant of FIPV-infected macrophages, and this factor was TNF-alpha: fAPN expression was upregulated in recombinant feline TNF-alpha-treated macrophages, and FIPV infectivity was increased in these macrophages. These findings suggested that FIPV replication in macrophages increases TNF-alpha production in macrophages, and the produced TNF-alpha acts and upregulates fAPN expression, increasing FIPV sensitivity.

          Related collections

          Most cited references21

          • Record: found
          • Abstract: found
          • Article: not found

          Acquisition of macrophage tropism during the pathogenesis of feline infectious peritonitis is determined by mutations in the feline coronavirus spike protein.

          In feline coronavirus (FCoV) pathogenesis, the ability to infect macrophages is an essential virulence factor. Whereas the low-virulence feline enteric coronavirus (FECV) isolates primarily replicate in the epithelial cells of the enteric tract, highly virulent feline infectious peritonitis virus (FIPV) isolates have acquired the ability to replicate efficiently in macrophages, which allows rapid dissemination of the virulent virus throughout the body. FIPV 79-1146 and FECV 79-1683 are two genetically closely related representatives of the two pathotypes. Whereas FECV 79-1683 causes at the most a mild enteritis in young kittens, FIPV 79-1146 almost invariably induces a lethal peritonitis. The virulence phenotypes correlate with the abilities of these viruses to infect and replicate in macrophages, a feature of FIPV 79-1146 but not of FECV 79-1683. To identify the genetic determinants of the FIPV 79-1146 macrophage tropism, we exchanged regions of its genome with the corresponding parts of FECV 79-1683, after which the ability of the FIPV/FECV hybrid viruses to infect macrophages was tested. Thus, we established that the FIPV spike protein is the determinant for efficient macrophage infection. Interestingly, this property mapped to the C-terminal domain of the protein, implying that the difference in infection efficiency between the two viruses is not determined at the level of receptor usage, which we confirmed by showing that infection by both viruses was equally blocked by antibodies directed against the feline aminopeptidase N receptor. The implications of these findings are discussed.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Infection of a human respiratory epithelial cell line with rhinovirus. Induction of cytokine release and modulation of susceptibility to infection by cytokine exposure.

            Rhinovirus infections cause over one third of all colds and are a contributing factor to exacerbations of asthma. To gain insights into the early biochemical events that occur in infected epithelial cells, we develop, for the first time, a model in which a pure respiratory epithelial cell population can be routinely infected by rhinovirus. Viral infection was confirmed by demonstrating that viral titers of supernatants and lysates from infected cell increased with time and by PCR. Infection by rhinovirus 14 was inhibited by homotypic antiserum and by antibodies to intercellular adhesion molecule-1 (ICAM-1), the receptor for this virus. Susceptibility of epithelial cells to infection by rhinovirus 14 (but not rhinovirus 2, an ICAM-1 independent strain) can be increased by preexposure of cells to TNF alpha, whereas IFN gamma reduces susceptibility to infection by both rhinovirus strains. Rhinovirus infection per se does not markedly alter ICAM-1 expression on epithelial cells. Finally, we demonstrate that rhinovirus infection induced increased production of IL-8, IL-6, and GM-CSF from epithelial cells. Production of IL-8 correlated with viral replication during the first 24 h after infection. This model should provide useful insights into the pathogenesis of rhinovirus infections.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              A review of feline infectious peritonitis virus: molecular biology, immunopathogenesis, clinical aspects, and vaccination

              Feline infectious peritontis (FIP) has been an elusive and frustrating problem for veterinary practitioners and cat breeders for many years. Over the last several years, reports have begun to elucidate aspects of the molecular biology of the causal virus (FIPV). These papers complement a rapidly growing base of knowledge concerning the molecular organization and replication of coronaviruses in general. The fascinating immunopathogenesis of FIPV infection and the virus' interaction with macrophages has also been the subject of several recent papers. It is now clear that FIPV may be of interest to scientists other than veterinary virologists since its pathogenesis may provide a useful model system for other viruses whose infectivity is enhanced in the presence of virus-specific antibody. With these advances and the recent release of the first commercially-available FIPV vaccine, it is appropriate to review what is known about the organization and replication of coronaviruses and the pathogenesis of FIPV infection.
                Bookmark

                Author and article information

                Contributors
                Journal
                Virology
                Virology
                Virology
                Academic Press
                0042-6822
                1096-0341
                23 March 2007
                20 July 2007
                23 March 2007
                : 364
                : 1
                : 64-72
                Affiliations
                Department of Veterinary Infectious Disease, School of Veterinary Medicine and Animal Sciences, Kitasato University, Towada, Aomori 034-8628, Japan
                Author notes
                [* ]Corresponding author. Fax: +81 176 23 8703. hohdatsu@ 123456vmas.kitasato-u.ac.jp
                Article
                S0042-6822(07)00119-5
                10.1016/j.virol.2007.02.006
                7103289
                17382365
                97e00dde-2182-4b12-8303-d60b45089721
                Copyright © 2007 Elsevier Inc. All rights reserved.

                Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website. Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.

                History
                : 18 November 2006
                : 1 January 2007
                : 11 February 2007
                Categories
                Article

                Microbiology & Virology
                fip,ade,tnf-alpha,fapn
                Microbiology & Virology
                fip, ade, tnf-alpha, fapn

                Comments

                Comment on this article