86
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The automated computation of tree-level and next-to-leading order differential cross sections, and their matching to parton shower simulations

      Preprint

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          We discuss the theoretical bases that underpin the automation of the computations of tree-level and next-to-leading order cross sections, of their matching to parton shower simulations, and of the merging of matched samples that differ by light-parton multiplicities. We present a computer program, MadGraph5_aMC@NLO, capable of handling all these computations -- parton-level fixed order, shower-matched, merged -- in a unified framework whose defining features are flexibility, high level of parallelisation, and human intervention limited to input physics quantities. We demonstrate the potential of the program by presenting selected phenomenological applications relevant to the LHC and to a 1-TeV \(e^+e^-\) collider. While next-to-leading order results are restricted to QCD corrections to SM processes in the first public version, we show that from the user viewpoint no changes have to be expected in the case of corrections due to any given renormalisable Lagrangian, and that the implementation of these are well under way.

          Related collections

          Most cited references33

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Parton distributions for the LHC

          We present updated leading-order, next-to-leading order and next-to-next-to-leading order parton distribution functions ("MSTW 2008") determined from global analysis of hard-scattering data within the standard framework of leading-twist fixed-order collinear factorisation in the MSbar scheme. These parton distributions supersede the previously available "MRST" sets and should be used for the first LHC data-taking and for the associated theoretical calculations. New data sets fitted include CCFR/NuTeV dimuon cross sections, which constrain the strange quark and antiquark distributions, and Tevatron Run II data on inclusive jet production, the lepton charge asymmetry from W decays and the Z rapidity distribution. Uncertainties are propagated from the experimental errors on the fitted data points using a new dynamic procedure for each eigenvector of the covariance matrix. We discuss the major changes compared to previous MRST fits, briefly compare to parton distributions obtained by other fitting groups, and give predictions for the W and Z total cross sections at the Tevatron and LHC.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Reliable Perturbative Results for Strong Interactions?

              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              The Hierarchy Problem and New Dimensions at a Millimeter

              We propose a new framework for solving the hierarchy problem which does not rely on either supersymmetry or technicolor. In this framework, the gravitational and gauge interactions become united at the weak scale, which we take as the only fundamental short distance scale in nature. The observed weakness of gravity on distances \(\gsim\) 1 mm is due to the existence of \(n \geq 2\) new compact spatial dimensions large compared to the weak scale. The Planck scale \(M_{Pl} \sim G_N^{-1/2}\) is not a fundamental scale; its enormity is simply a consequence of the large size of the new dimensions. While gravitons can freely propagate in the new dimensions, at sub-weak energies the Standard Model (SM) fields must be localized to a 4-dimensional manifold of weak scale "thickness" in the extra dimensions. This picture leads to a number of striking signals for accelerator and laboratory experiments. For the case of \(n=2\) new dimensions, planned sub-millimeter measurements of gravity may observe the transition from \(1/r^2 \to 1/r^4\) Newtonian gravitation. For any number of new dimensions, the LHC and NLC could observe strong quantum gravitational interactions. Furthermore, SM particles can be kicked off our 4 dimensional manifold into the new dimensions, carrying away energy, and leading to an abrupt decrease in events with high transverse momentum \(p_T \gsim\) TeV. For certain compact manifolds, such particles will keep circling in the extra dimensions, periodically returning, colliding with and depositing energy to our four dimensional vacuum with frequencies of \( \sim 10^{12}\) Hz or larger. As a concrete illustration, we construct a model with SM fields localised on the 4-dimensional throat of a vortex in 6 dimensions, with a Pati-Salam gauge symmetry \(SU(4) \times SU(2) \times SU(2)\) in the bulk.
                Bookmark

                Author and article information

                Journal
                2014-05-01
                2014-07-21
                Article
                10.1007/JHEP07(2014)079
                1405.0301
                97e1d1bb-68c6-4288-af80-53fa666e1290

                http://arxiv.org/licenses/nonexclusive-distrib/1.0/

                History
                Custom metadata
                CERN-PH-TH/2014-064, CP3-14-18, LPN14-066, MCNET-14-09, ZU-TH 14/14
                JHEP07(2014)079
                158 pages, 27 figures; a few references have been added
                hep-ph

                High energy & Particle physics
                High energy & Particle physics

                Comments

                Comment on this article