10
views
0
recommends
+1 Recommend
0 collections
    5
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      A lead–porphyrin metal–organic framework: gas adsorption properties and electrocatalytic activity for water oxidation

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          A 3D non-interpenetrating porous metal–organic framework shows electrocatalytic activity for water oxidation in alkaline solution.

          Abstract

          A 3D non-interpenetrating porous metal–organic framework [Pb 2(H 2TCPP)]·4DMF·H 2O (Pb-TCPP) (H 6TCPP = 5,10,15,20-tetra(carboxyphenyl)porphyrin) was synthesized by employment of a robust porphyrin ligand. Pb-TCPP exhibits a one-dimensional channel possessing fairly good capability of gas sorption for N 2, H 2, Ar, and CO 2 gases, and also features selectivity for CO 2 over CH 4 at 298 K. Furthermore, Pb-TCPP shows electrocatalytic activity for water oxidation in alkaline solution. It is the first 3D porous Pb-MOF that exhibits both gas adsorption properties and electrocatalytic activity for an oxygen evolution reaction (OER).

          Related collections

          Most cited references51

          • Record: found
          • Abstract: found
          • Article: not found

          Functional Porous Coordination Polymers

          The chemistry of the coordination polymers has in recent years advanced extensively, affording various architectures, which are constructed from a variety of molecular building blocks with different interactions between them. The next challenge is the chemical and physical functionalization of these architectures, through the porous properties of the frameworks. This review concentrates on three aspects of coordination polymers: 1). the use of crystal engineering to construct porous frameworks from connectors and linkers ("nanospace engineering"), 2). characterizing and cataloging the porous properties by functions for storage, exchange, separation, etc., and 3). the next generation of porous functions based on dynamic crystal transformations caused by guest molecules or physical stimuli. Our aim is to present the state of the art chemistry and physics of and in the micropores of porous coordination polymers.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Hydrogen storage in metal-organic frameworks.

            New materials capable of storing hydrogen at high gravimetric and volumetric densities are required if hydrogen is to be widely employed as a clean alternative to hydrocarbon fuels in cars and other mobile applications. With exceptionally high surface areas and chemically-tunable structures, microporous metal-organic frameworks have recently emerged as some of the most promising candidate materials. In this critical review we provide an overview of the current status of hydrogen storage within such compounds. Particular emphasis is given to the relationships between structural features and the enthalpy of hydrogen adsorption, spectroscopic methods for probing framework-H(2) interactions, and strategies for improving storage capacity (188 references).
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Metal-organic frameworks (MOFs).

                Bookmark

                Author and article information

                Journal
                ICHBD9
                Dalton Transactions
                Dalton Trans.
                Royal Society of Chemistry (RSC)
                1477-9226
                1477-9234
                2016
                2016
                : 45
                : 1
                : 61-65
                Article
                10.1039/C5DT04025F
                980d5368-75de-4af4-b99f-3cab812f0037
                © 2016
                History

                Comments

                Comment on this article