2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Neutrino tomography of Earth

      , ,
      Nature Physics
      Springer Nature America, Inc

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references32

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          MultiNest: an efficient and robust Bayesian inference tool for cosmology and particle physics

          We present further development and the first public release of our multimodal nested sampling algorithm, called MultiNest. This Bayesian inference tool calculates the evidence, with an associated error estimate, and produces posterior samples from distributions that may contain multiple modes and pronounced (curving) degeneracies in high dimensions. The developments presented here lead to further substantial improvements in sampling efficiency and robustness, as compared to the original algorithm presented in Feroz & Hobson (2008), which itself significantly outperformed existing MCMC techniques in a wide range of astrophysical inference problems. The accuracy and economy of the MultiNest algorithm is demonstrated by application to two toy problems and to a cosmological inference problem focussing on the extension of the vanilla \(\Lambda\)CDM model to include spatial curvature and a varying equation of state for dark energy. The MultiNest software, which is fully parallelized using MPI and includes an interface to CosmoMC, is available at http://www.mrao.cam.ac.uk/software/multinest/. It will also be released as part of the SuperBayeS package, for the analysis of supersymmetric theories of particle physics, at http://www.superbayes.org
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Multimodal nested sampling: an efficient and robust alternative to MCMC methods for astronomical data analysis

            , (2010)
            In performing a Bayesian analysis of astronomical data, two difficult problems often emerge. First, in estimating the parameters of some model for the data, the resulting posterior distribution may be multimodal or exhibit pronounced (curving) degeneracies, which can cause problems for traditional MCMC sampling methods. Second, in selecting between a set of competing models, calculation of the Bayesian evidence for each model is computationally expensive. The nested sampling method introduced by Skilling (2004), has greatly reduced the computational expense of calculating evidences and also produces posterior inferences as a by-product. This method has been applied successfully in cosmological applications by Mukherjee et al. (2006), but their implementation was efficient only for unimodal distributions without pronounced degeneracies. Shaw et al. (2007), recently introduced a clustered nested sampling method which is significantly more efficient in sampling from multimodal posteriors and also determines the expectation and variance of the final evidence from a single run of the algorithm, hence providing a further increase in efficiency. In this paper, we build on the work of Shaw et al. and present three new methods for sampling and evidence evaluation from distributions that may contain multiple modes and significant degeneracies; we also present an even more efficient technique for estimating the uncertainty on the evaluated evidence. These methods lead to a further substantial improvement in sampling efficiency and robustness, and are applied to toy problems to demonstrate the accuracy and economy of the evidence calculation and parameter estimation. Finally, we discuss the use of these methods in performing Bayesian object detection in astronomical datasets.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Monte Carlo treatment of hadronic interactions in enhanced Pomeron scheme: I. QGSJET-II model

              The construction of a Monte Carlo generator for high energy hadronic and nuclear collisions is discussed in detail. Interactions are treated in the framework of the Reggeon Field Theory, taking into consideration enhanced Pomeron diagrams which are resummed to all orders in the triple-Pomeron coupling. Soft and "semihard" contributions to the underlying parton dynamics are accounted for within the "semihard Pomeron" approach. The structure of cut enhanced diagrams is analyzed; they are regrouped into a number of subclasses characterized by positively defined contributions which define partial weights for various "macro-configurations" of hadronic final states. An iterative procedure for a Monte Carlo generation of the structure of final states is described. The model results for hadronic cross sections and for particle production are compared to experimental data.
                Bookmark

                Author and article information

                Journal
                Nature Physics
                Nature Phys
                Springer Nature America, Inc
                1745-2473
                1745-2481
                November 5 2018
                Article
                10.1038/s41567-018-0319-1
                98240f38-0b9f-4032-9430-faa35f7917b9
                © 2018

                http://www.springer.com/tdm

                History

                Comments

                Comment on this article