19
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      ECDomainMiner: discovering hidden associations between enzyme commission numbers and Pfam domains

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Many entries in the protein data bank (PDB) are annotated to show their component protein domains according to the Pfam classification, as well as their biological function through the enzyme commission (EC) numbering scheme. However, despite the fact that the biological activity of many proteins often arises from specific domain-domain and domain-ligand interactions, current on-line resources rarely provide a direct mapping from structure to function at the domain level. Since the PDB now contains many tens of thousands of protein chains, and since protein sequence databases can dwarf such numbers by orders of magnitude, there is a pressing need to develop automatic structure-function annotation tools which can operate at the domain level.

          Results

          This article presents ECDomainMiner, a novel content-based filtering approach to automatically infer associations between EC numbers and Pfam domains. ECDomainMiner finds a total of 20,728 non-redundant EC-Pfam associations with a F-measure of 0.95 with respect to a “Gold Standard” test set extracted from InterPro. Compared to the 1515 manually curated EC-Pfam associations in InterPro, ECDomainMiner infers a 13-fold increase in the number of EC-Pfam associations.

          Conclusion

          These EC-Pfam associations could be used to annotate some 58,722 protein chains in the PDB which currently lack any EC annotation. The ECDomainMiner database is publicly available at http://ecdm.loria.fr/.

          Related collections

          Most cited references19

          • Record: found
          • Abstract: found
          • Article: not found

          UniRef: comprehensive and non-redundant UniProt reference clusters.

          Redundant protein sequences in biological databases hinder sequence similarity searches and make interpretation of search results difficult. Clustering of protein sequence space based on sequence similarity helps organize all sequences into manageable datasets and reduces sampling bias and overrepresentation of sequences. The UniRef (UniProt Reference Clusters) provide clustered sets of sequences from the UniProt Knowledgebase (UniProtKB) and selected UniProt Archive records to obtain complete coverage of sequence space at several resolutions while hiding redundant sequences. Currently covering >4 million source sequences, the UniRef100 database combines identical sequences and subfragments from any source organism into a single UniRef entry. UniRef90 and UniRef50 are built by clustering UniRef100 sequences at the 90 or 50% sequence identity levels. UniRef100, UniRef90 and UniRef50 yield a database size reduction of approximately 10, 40 and 70%, respectively, from the source sequence set. The reduced redundancy increases the speed of similarity searches and improves detection of distant relationships. UniRef entries contain summary cluster and membership information, including the sequence of a representative protein, member count and common taxonomy of the cluster, the accession numbers of all the merged entries and links to rich functional annotation in UniProtKB to facilitate biological discovery. UniRef has already been applied to broad research areas ranging from genome annotation to proteomics data analysis. UniRef is updated biweekly and is available for online search and retrieval at http://www.uniprot.org, as well as for download at ftp://ftp.uniprot.org/pub/databases/uniprot/uniref. Supplementary data are available at Bioinformatics online.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            The Universal Protein Resource (UniProt) in 2010

            The primary mission of UniProt is to support biological research by maintaining a stable, comprehensive, fully classified, richly and accurately annotated protein sequence knowledgebase, with extensive cross-references and querying interfaces freely accessible to the scientific community. UniProt is produced by the UniProt Consortium which consists of groups from the European Bioinformatics Institute (EBI), the Swiss Institute of Bioinformatics (SIB) and the Protein Information Resource (PIR). UniProt is comprised of four major components, each optimized for different uses: the UniProt Archive, the UniProt Knowledgebase, the UniProt Reference Clusters and the UniProt Metagenomic and Environmental Sequence Database. UniProt is updated and distributed every 3 weeks and can be accessed online for searches or download at http://www.uniprot.org.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The Protein Data Bank. A computer-based archival file for macromolecular structures.

              The Protein Data Bank is a computer-based archival file for macromolecular structures. The Bank stores in a uniform format atomic co-ordinates and partial bond connectivities, as derived from crystallographic studies. Text included in each data entry gives pertinent information for the structure at hand (e.g. species from which the molecule has been obtained, resolution of diffraction data, literature citations and specifications of secondary structure). In addition to atomic co-ordinates and connectivities, the Protein Data Bank stores structure factors and phases, although these latter data are not placed in any uniform format. Input of data to the Bank and general maintenance functions are carried out at Brookhaven National Laboratory. All data stored in the Bank are available on magnetic tape for public distribution, from Brookhaven (to laboratories in the Americas), Tokyo (Japan), and Cambridge (Europe and worldwide). A master file is maintained at Brookhaven and duplicate copies are stored in Cambridge and Tokyo. In the future, it is hoped to expand the scope of the Protein Data Bank to make available co-ordinates for standard structural types (e.g. alpha-helix, RNA double-stranded helix) and representative computer programs of utility in the study and interpretation of macromolecular structures.
                Bookmark

                Author and article information

                Contributors
                seyed-ziaeddin.alborzi@inria.fr
                marie-dominique.devignes@loria.fr
                dave.ritchie@inria.fr
                Journal
                BMC Bioinformatics
                BMC Bioinformatics
                BMC Bioinformatics
                BioMed Central (London )
                1471-2105
                13 February 2017
                13 February 2017
                2017
                : 18
                : 107
                Affiliations
                [1 ]Université de Lorraine, LORIA, UMR, Vandœuvre-lès-Nancy, 7503, 54506 France
                [2 ]CNRS, LORIA, UMR, Vandœuvre-lès-Nancy, 7503, 54506 France
                [3 ]Inria Nancy Grand-Es, Villers-lès-Nancy, 54600 France
                Author information
                http://orcid.org/0000-0002-0399-8713
                Article
                1519
                10.1186/s12859-017-1519-x
                5307852
                28193156
                9835a57a-0dd6-48d9-b1c9-7e35e7091821
                © The Author(s) 2017

                Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License( http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

                History
                : 28 August 2016
                : 1 February 2017
                Categories
                Research Article
                Custom metadata
                © The Author(s) 2017

                Bioinformatics & Computational biology
                content-based filtering,protein domain,protein function,enzyme commission number,pfam domain

                Comments

                Comment on this article