2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Disturbance of Arabidopsis thaliana microRNA-regulated pathways by Xcc bacterial effector proteins.

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Plants are continuously subjected to infection by pathogens, including bacteria and viruses. Bacteria can inject a variety of effector proteins into the host to reprogram host defense mechanism. It is known that microRNAs participate in plant disease resistance to bacterial pathogens and previous studies have suggested that some bacterial effectors have evolved to disturb the host's microRNA-regulated pathways; and so enabling infection. In this study, the inter-species interaction between an Xanthomonas campestris pv campestris (Xcc) pathogen effector and Arabidopsis thaliana microRNA transcription promoter was investigated using three methods: (1) interolog, (2) alignment based on using transcription factor binding site profile matrix, and (3) the web-based binding site prediction tool, PATSER. Furthermore, we integrated another two data sets from our previous study into the present web-based system. These are (1) microRNA target genes and their downstream effects mediated by protein-protein interaction (PPI), and (2) the Xcc-Arabidopsis PPI information. This present work is probably the first comprehensive study of constructing pathways that comprises effector, microRNA, target genes and PPI for the study of pathogen-host interactions. It is expected that this study may help to elucidate the role of pathogen-host interplay in a plant's immune system. The database is freely accessible at: http://ppi.bioinfo.asia.edu.tw/EDMRP .

          Related collections

          Author and article information

          Journal
          Amino Acids
          Amino acids
          Springer Nature America, Inc
          1438-2199
          0939-4451
          Apr 2014
          : 46
          : 4
          Affiliations
          [1 ] Department of Biomedical Informatics, Asia University, Taichung, 41354, Taiwan.
          Article
          10.1007/s00726-013-1646-2
          24385242
          98364579-e893-4a57-8a60-f6c19e2785ae
          History

          Comments

          Comment on this article