8
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      CDP-Diacylglycerol Synthases (CDS): Gateway to Phosphatidylinositol and Cardiolipin Synthesis

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Cytidine diphosphate diacylglycerol (CDP-DAG) is a key intermediate in the synthesis of phosphatidylinositol (PI) and cardiolipin (CL). Both PI and CL have highly specialized roles in cells. PI can be phosphorylated and these phosphorylated derivatives play major roles in signal transduction, membrane traffic, and maintenance of the actin cytoskeletal network. CL is the signature lipid of mitochondria and has a plethora of functions including maintenance of cristae morphology, mitochondrial fission, and fusion and for electron transport chain super complex formation. Both lipids are synthesized in different organelles although they share the common intermediate, CDP-DAG. CDP-DAG is synthesized from phosphatidic acid (PA) and CTP by enzymes that display CDP-DAG synthase activities. Two families of enzymes, CDS and TAMM41, which bear no sequence or structural relationship, have now been identified. TAMM41 is a peripheral membrane protein localized in the inner mitochondrial membrane required for CL synthesis. CDS enzymes are ancient integral membrane proteins found in all three domains of life. In mammals, they provide CDP-DAG for PI synthesis and for phosphatidylglycerol (PG) and CL synthesis in prokaryotes. CDS enzymes are critical for maintaining phosphoinositide levels during phospholipase C (PLC) signaling. Hydrolysis of PI (4,5) bisphosphate by PLC requires the resynthesis of PI and CDS enzymes catalyze the rate-limiting step in the process. In mammals, the protein products of two CDS genes (CDS1 and CDS2) localize to the ER and it is suggested that CDS2 is the major CDS for this process. Expression of CDS enzymes are regulated by transcription factors and CDS enzymes may also contribute to CL synthesis in mitochondria. Studies of CDS enzymes in protozoa reveal spatial segregation of CDS enzymes from the rest of the machinery required for both PI and CL synthesis identifying a key gap in our understanding of how CDP-DAG can cross the different membrane compartments in protozoa and in mammals.

          Related collections

          Most cited references149

          • Record: found
          • Abstract: found
          • Article: not found

          PI3K signalling: the path to discovery and understanding.

          Over the past two decades, our understanding of phospoinositide 3-kinases (PI3Ks) has progressed from the identification of an enzymatic activity associated with growth factors, GPCRs and certain oncogene products to a disease target in cancer and inflammation, with PI3K inhibitors currently in clinical trials. Elucidation of PI3K-dependent networks led to the discovery of the phosphoinositide-binding PH, PX and FYVE domains as conduits of intracellular lipid signalling, the determination of the molecular function of the tumour suppressor PTEN and the identification of AKT and mTOR protein kinases as key regulators of cell growth. Here we look back at the main discoveries that shaped the PI3K field.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            INTRACELLULAR TRANSPORT. PI4P/phosphatidylserine countertransport at ORP5- and ORP8-mediated ER-plasma membrane contacts.

            Lipid transfer between cell membrane bilayers at contacts between the endoplasmic reticulum (ER) and other membranes help to maintain membrane lipid homeostasis. We found that two similar ER integral membrane proteins, oxysterol-binding protein (OSBP)-related protein 5 (ORP5) and ORP8, tethered the ER to the plasma membrane (PM) via the interaction of their pleckstrin homology domains with phosphatidylinositol 4-phosphate (PI4P) in this membrane. Their OSBP-related domains (ORDs) harbored either PI4P or phosphatidylserine (PS) and exchanged these lipids between bilayers. Gain- and loss-of-function experiments showed that ORP5 and ORP8 could mediate PI4P/PS countertransport between the ER and the PM, thus delivering PI4P to the ER-localized PI4P phosphatase Sac1 for degradation and PS from the ER to the PM. This exchange helps to control plasma membrane PI4P levels and selectively enrich PS in the PM.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Metabolism and Regulation of Glycerolipids in the Yeast Saccharomyces cerevisiae

              Due to its genetic tractability and increasing wealth of accessible data, the yeast Saccharomyces cerevisiae is a model system of choice for the study of the genetics, biochemistry, and cell biology of eukaryotic lipid metabolism. Glycerolipids (e.g., phospholipids and triacylglycerol) and their precursors are synthesized and metabolized by enzymes associated with the cytosol and membranous organelles, including endoplasmic reticulum, mitochondria, and lipid droplets. Genetic and biochemical analyses have revealed that glycerolipids play important roles in cell signaling, membrane trafficking, and anchoring of membrane proteins in addition to membrane structure. The expression of glycerolipid enzymes is controlled by a variety of conditions including growth stage and nutrient availability. Much of this regulation occurs at the transcriptional level and involves the Ino2–Ino4 activation complex and the Opi1 repressor, which interacts with Ino2 to attenuate transcriptional activation of UASINO-containing glycerolipid biosynthetic genes. Cellular levels of phosphatidic acid, precursor to all membrane phospholipids and the storage lipid triacylglycerol, regulates transcription of UASINO-containing genes by tethering Opi1 to the nuclear/endoplasmic reticulum membrane and controlling its translocation into the nucleus, a mechanism largely controlled by inositol availability. The transcriptional activator Zap1 controls the expression of some phospholipid synthesis genes in response to zinc availability. Regulatory mechanisms also include control of catalytic activity of glycerolipid enzymes by water-soluble precursors, products and lipids, and covalent modification of phosphorylation, while in vivo function of some enzymes is governed by their subcellular location. Genome-wide genetic analysis indicates coordinate regulation between glycerolipid metabolism and a broad spectrum of metabolic pathways.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Cell Dev Biol
                Front Cell Dev Biol
                Front. Cell Dev. Biol.
                Frontiers in Cell and Developmental Biology
                Frontiers Media S.A.
                2296-634X
                07 February 2020
                2020
                : 8
                : 63
                Affiliations
                Division of Biosciences, Department of Neuroscience, Physiology and Pharmacology, University College London , London, United Kingdom
                Author notes

                Edited by: Eleonora Napoli, University of California, Davis, United States

                Reviewed by: Richard M. Epand, McMaster University, Canada; Neale David Ridgway, Dalhousie University, Canada

                *Correspondence: Shamshad Cockcroft, s.cockcroft@ 123456ucl.ac.uk

                This article was submitted to Cellular Biochemistry, a section of the journal Frontiers in Cell and Developmental Biology

                Article
                10.3389/fcell.2020.00063
                7018664
                32117988
                983a8d99-f131-422b-a53f-f23b5ec2341d
                Copyright © 2020 Blunsom and Cockcroft.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 24 November 2019
                : 22 January 2020
                Page count
                Figures: 4, Tables: 2, Equations: 0, References: 166, Pages: 21, Words: 0
                Funding
                Funded by: British Heart Foundation 10.13039/501100000274
                Categories
                Cell and Developmental Biology
                Review

                phospholipase c,lipid synthesis,mitochondria,cdp-diacylglycerol,phosphatidic acid,endoplasmic reticulum,tamm41,phosphatidylinositol

                Comments

                Comment on this article