23
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Triple therapy in the management of chronic obstructive pulmonary disease: systematic review and meta-analysis

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Objective

          To compare the rate of moderate to severe exacerbations between triple therapy and dual therapy or monotherapy in patients with chronic obstructive pulmonary disease (COPD).

          Design

          Systematic review and meta-analysis of randomised controlled trials.

          Data sources

          PubMed, Embase, Cochrane databases, and clinical trial registries searched from inception to April 2018.

          Eligibility criteria

          Randomised controlled trials comparing triple therapy with dual therapy or monotherapy in patients with COPD were eligible. Efficacy and safety outcomes of interest were also available.

          Data extraction and synthesis

          Data were collected independently. Meta-analyses were conducted to calculate rate ratios, hazard ratios, risk ratios, and mean differences with 95% confidence intervals. Quality of evidence was summarised in accordance with GRADE methodology (grading of recommendations assessment, development, and evaluation).

          Results

          21 trials (19 publications) were included. Triple therapy consisted of a long acting muscarinic antagonist (LAMA), long acting β agonist (LABA), and inhaled corticosteroid (ICS). Triple therapy was associated with a significantly reduced rate of moderate or severe exacerbations compared with LAMA monotherapy (rate ratio 0.71, 95% confidence interval 0.60 to 0.85), LAMA and LABA (0.78, 0.70 to 0.88), and ICS and LABA (0.77, 0.66 to 0.91). Trough forced expiratory volume in 1 second (FEV1) and quality of life were favourable with triple therapy. The overall safety profile of triple therapy is reassuring, but pneumonia was significantly higher with triple therapy than with dual therapy of LAMA and LABA (relative risk 1.53, 95% confidence interval 1.25 to 1.87).

          Conclusions

          Use of triple therapy resulted in a lower rate of moderate or severe exacerbations of COPD, better lung function, and better health related quality of life than dual therapy or monotherapy in patients with advanced COPD.

          Study registration

          Prospero CRD42018077033.

          Related collections

          Most cited references20

          • Record: found
          • Abstract: found
          • Article: not found

          Tiotropium in combination with placebo, salmeterol, or fluticasone-salmeterol for treatment of chronic obstructive pulmonary disease: a randomized trial.

          Treatment of moderate or severe chronic obstructive pulmonary disease (COPD) with combinations of inhaled corticosteroids, long-acting beta-agonists, and long-acting anticholinergic bronchodilators is common but unstudied. To determine whether combining tiotropium with salmeterol or fluticasone-salmeterol improves clinical outcomes in adults with moderate to severe COPD compared with tiotropium alone. Randomized, double-blind, placebo-controlled trial conducted from October 2003 to January 2006. 27 academic and community medical centers in Canada. 449 patients with moderate or severe COPD. 1 year of treatment with tiotropium plus placebo, tiotropium plus salmeterol, or tiotropium plus fluticasone-salmeterol. The primary end point was the proportion of patients who experienced an exacerbation of COPD that required treatment with systemic steroids or antibiotics. The proportion of patients in the tiotropium plus placebo group who experienced an exacerbation (62.8%) did not differ from that in the tiotropium plus salmeterol group (64.8%; difference, -2.0 percentage points [95% CI, -12.8 to 8.8 percentage points]) or in the tiotropium plus fluticasone-salmeterol group (60.0%; difference, 2.8 percentage points [CI, -8.2 to 13.8 percentage points]). In sensitivity analyses, the point estimates and 95% confidence bounds shifted in the direction favoring tiotropium plus salmeterol and tiotropium plus fluticasone-salmeterol. Tiotropium plus fluticasone-salmeterol improved lung function (P = 0.049) and disease-specific quality of life (P = 0.01) and reduced the number of hospitalizations for COPD exacerbation (incidence rate ratio, 0.53 [CI, 0.33 to 0.86]) and all-cause hospitalizations (incidence rate ratio, 0.67 [CI, 0.45 to 0.99]) compared with tiotropium plus placebo. In contrast, tiotropium plus salmeterol did not statistically improve lung function or hospitalization rates compared with tiotropium plus placebo. More than 40% of patients who received tiotropium plus placebo and tiotropium plus salmeterol discontinued therapy prematurely, and many crossed over to treatment with open-label inhaled steroids or long-acting beta-agonists. Addition of fluticasone-salmeterol to tiotropium therapy did not statistically influence rates of COPD exacerbation but did improve lung function, quality of life, and hospitalization rates in patients with moderate to severe COPD. International Standard Randomised Controlled Trial registration number: ISRCTN29870041.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Inhaled steroids and risk of pneumonia for chronic obstructive pulmonary disease.

            Inhaled corticosteroids (ICS) are anti-inflammatory drugs that have proven benefits for people with worsening symptoms of chronic obstructive pulmonary disease (COPD) and repeated exacerbations. They are commonly used as combination inhalers with long-acting beta2-agonists (LABA) to reduce exacerbation rates and all-cause mortality, and to improve lung function and quality of life. The most common combinations of ICS and LABA used in combination inhalers are fluticasone and salmeterol, budesonide and formoterol and a new formulation of fluticasone in combination with vilanterol, which is now available. ICS have been associated with increased risk of pneumonia, but the magnitude of risk and how this compares with different ICS remain unclear. Recent reviews conducted to address their safety have not compared the relative safety of these two drugs when used alone or in combination with LABA. To assess the risk of pneumonia associated with the use of fluticasone and budesonide for COPD. We identified trials from the Cochrane Airways Group Specialised Register of trials (CAGR), clinicaltrials.gov, reference lists of existing systematic reviews and manufacturer websites. The most recent searches were conducted in September 2013. We included parallel-group randomised controlled trials (RCTs) of at least 12 weeks' duration. Studies were included if they compared the ICS budesonide or fluticasone versus placebo, or either ICS in combination with a LABA versus the same LABA as monotherapy for people with COPD. Two review authors independently extracted study characteristics, numerical data and risk of bias information for each included study.We looked at direct comparisons of ICS versus placebo separately from comparisons of ICS/LABA versus LABA for all outcomes, and we combined these with subgroups when no important heterogeneity was noted. After assessing for transitivity, we conducted an indirect comparison to compare budesonide versus fluticasone monotherapy, but we could not do the same for the combination therapies because of systematic differences between the budesonide and fluticasone combination data sets.When appropriate, we explored the effects of ICS dose, duration of ICS therapy and baseline severity on the primary outcome. Findings of all outcomes are presented in 'Summary of findings' tables using GRADEPro. We found 43 studies that met the inclusion criteria, and more evidence was provided for fluticasone (26 studies; n = 21,247) than for budesonide (17 studies; n = 10,150). Evidence from the budesonide studies was more inconsistent and less precise, and the studies were shorter. The populations within studies were more often male with a mean age of around 63, mean pack-years smoked over 40 and mean predicted forced expiratory volume of one second (FEV1) less than 50%.High or uneven dropout was considered a high risk of bias in almost 40% of the trials, but conclusions for the primary outcome did not change when the trials at high risk of bias were removed in a sensitivity analysis.Fluticasone increased non-fatal serious adverse pneumonia events (requiring hospital admission) (odds ratio (OR) 1.78, 95% confidence interval (CI) 1.50 to 2.12; 18 more per 1000 treated over 18 months; high quality), and no evidence suggested that this outcome was reduced by delivering it in combination with salmeterol or vilanterol (subgroup differences: I(2) = 0%, P value 0.51), or that different doses, trial duration or baseline severity significantly affected the estimate. Budesonide also increased non-fatal serious adverse pneumonia events compared with placebo, but the effect was less precise and was based on shorter trials (OR 1.62, 95% CI 1.00 to 2.62; six more per 1000 treated over nine months; moderate quality). Some of the variation in the budesonide data could be explained by a significant difference between the two commonly used doses: 640 mcg was associated with a larger effect than 320 mcg relative to placebo (subgroup differences: I(2) = 74%, P value 0.05).An indirect comparison of budesonide versus fluticasone monotherapy revealed no significant differences with respect to serious adverse events (pneumonia-related or all-cause) or mortality. The risk of any pneumonia event (i.e. less serious cases treated in the community) was higher with fluticasone than with budesonide (OR 1.86, 95% CI 1.04 to 3.34); this was the only significant difference reported between the two drugs. However, this finding should be interpreted with caution because of possible differences in the assignment of pneumonia diagnosis, and because no trials directly compared the two drugs.No significant difference in overall mortality rates was observed between either of the inhaled steroids and the control interventions (both high-quality evidence), and pneumonia-related deaths were too rare to permit conclusions to be drawn. Budesonide and fluticasone, delivered alone or in combination with a LABA, are associated with increased risk of serious adverse pneumonia events, but neither significantly affected mortality compared with controls. The safety concerns highlighted in this review should be balanced with recent cohort data and established randomised evidence of efficacy regarding exacerbations and quality of life. Comparison of the two drugs revealed no statistically significant difference in serious pneumonias, mortality or serious adverse events. Fluticasone was associated with higher risk of any pneumonia when compared with budesonide (i.e. less serious cases dealt with in the community), but variation in the definitions used by the respective manufacturers is a potential confounding factor in their comparison.Primary research should accurately measure pneumonia outcomes and should clarify both the definition and the method of diagnosis used, especially for new formulations such as fluticasone furoate, for which little evidence of the associated pneumonia risk is currently available. Similarly, systematic reviews and cohorts should address the reliability of assigning 'pneumonia' as an adverse event or cause of death and should determine how this affects the applicability of findings.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              The inevitable drift to triple therapy in COPD: an analysis of prescribing pathways in the UK

              Background Real-world prescription pathways leading to triple therapy (TT) (inhaled corticosteroid [ICS] plus long-acting β2-agonist bronchodilator [LABA] plus long-acting muscarinic antagonist) differ from Global initiative for chronic Obstructive Lung Disease [GOLD] and National Institute for Health and Care Excellence treatment recommendations. This study sets out to identify COPD patients without asthma receiving TT, and determine the pathways taken from diagnosis to the first prescription of TT. Methods This was a historical analysis of COPD patients without asthma from the Optimum Patient Care Research Database (387 primary-care practices across the UK) from 2002 to 2010. Patient disease severity was classified using GOLD 2013 criteria. Data were analyzed to determine prescribing of TT before, at, and after COPD diagnosis; the average time taken to receive TT; and the impact of lung function grade, modified Medical Research Council dyspnea score, and exacerbation history on the pathway to TT. Results During the study period, 32% of patients received TT. Of these, 19%, 28%, 37%, and 46% of patients classified as GOLD A, B, C, and D, respectively, progressed to TT after diagnosis (P<0.001). Of all patients prescribed TT, 25% were prescribed TT within 1 year of diagnosis, irrespective of GOLD classification (P=0.065). The most common prescription pathway to TT was LABA plus ICS. It was observed that exacerbation history did influence the pathway of LABA plus ICS to TT. Conclusion Real life UK prescription data demonstrates the inappropriate prescribing of TT and confirms that starting patients on ICS plus LABA results in the inevitable drift to overuse of TT. This study highlights the need for dissemination and implementation of COPD guidelines to physicians, ensuring that patients receive the recommended therapy.
                Bookmark

                Author and article information

                Contributors
                Role: experimentalist
                Role: pharmacist
                Role: professor
                Role: postgraduate student
                Role: postgraduate student
                Role: professor
                Role: professor
                Role: professor
                Journal
                BMJ
                BMJ
                BMJ-UK
                bmj
                The BMJ
                BMJ Publishing Group Ltd.
                0959-8138
                1756-1833
                2018
                06 November 2018
                : 363
                : k4388
                Affiliations
                [1 ]Laboratory of Physiological Sciences and Department of Pharmacy of the Affiliated Hospital of Guangdong Medical University, Guangdong Medical University, Zhanjiang, China
                [2 ]Department of Pharmacy, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
                [3 ]Department of Pharmacology, Guangdong Medical University, Zhanjiang, China
                [4 ]Department of Respiratory Medicine, Affiliated Hospital of Guangdong Medical University, Guangdong Medical University, No 57, South of Renmin Avenue, Zhanjiang 524001, China
                Author notes
                Correspondence to: W Yao yaoweimin2014@ 123456yeah.net
                Article
                zhey045538
                10.1136/bmj.k4388
                6218838
                30401700
                98401cb0-e14e-44ce-acff-c5dadc47d5e4
                Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions

                This is an Open Access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/.

                History
                : 05 October 2018
                Categories
                Research

                Medicine
                Medicine

                Comments

                Comment on this article