8
views
0
recommends
+1 Recommend
1 collections
    0
    shares

      Call for Papers: Green Renal Replacement Therapy: Caring for the Environment

      Submit here before July 31, 2024

      About Blood Purification: 3.0 Impact Factor I 5.6 CiteScore I 0.83 Scimago Journal & Country Rank (SJR)

      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Effects of Renin-Angiotensin System Inhibitors on Renal Expression of Renalase in Sprague-Dawley Rats Fed With High Salt Diet

      research-article

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background/Aims: The aim of our study was to investigate the effect of high-salt diet on the renal expression of renalase and the potential role of the local renin-angiotensin system in this process. Methods: Sprague-Dawley (SD) rats were divided into groups according to salt content in diet and drug treatment as follows: normal-salt diet (NS), high-salt diet (HS), high-salt intake with hydralazine (HS+H), high-salt diet with enalapril (HS+E), and high-salt diet with valsartan (HS+V). The dietary intervention and drugs were given for four weeks. Renin activity and angiotensin II type 1 receptor (AT1R) levels were detected by real-time PCR. Renalase mRNA and protein were also measured. Results: After four weeks, systolic blood pressure and proteinuria were significantly increased in the HS group with respect to the NS group. Dietary salt intake caused a dramatic decrease in renalase expression in the rat kidneys. Renal cortex renin and AT1R increased significantly in the HS and HS+H groups. Urinary protein was positively correlated with renal renin and AT1R levels. However, in the HS+E and HS+V groups, enalapril and valsartan failed to influence renal renalase expression but abolished the increase in proteinuria, renal cortex renin, and AT1R levels with respect to the HS group. Conclusion: This study indicates that high salt intake reduces renal expression, and renal RAS may be not involved in the regulation of renalase in SD rats fed with high-salt diet.

          Related collections

          Most cited references29

          • Record: found
          • Abstract: found
          • Article: not found

          Links between dietary salt intake, renal salt handling, blood pressure, and cardiovascular diseases.

          Epidemiological, migration, intervention, and genetic studies in humans and animals provide very strong evidence of a causal link between high salt intake and high blood pressure. The mechanisms by which dietary salt increases arterial pressure are not fully understood, but they seem related to the inability of the kidneys to excrete large amounts of salt. From an evolutionary viewpoint, the human species is adapted to ingest and excrete <1 g of salt per day, at least 10 times less than the average values currently observed in industrialized and urbanized countries. Independent of the rise in blood pressure, dietary salt also increases cardiac left ventricular mass, arterial thickness and stiffness, the incidence of strokes, and the severity of cardiac failure. Thus chronic exposure to a high-salt diet appears to be a major factor involved in the frequent occurrence of hypertension and cardiovascular diseases in human populations.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Renalase is a novel, soluble monoamine oxidase that regulates cardiac function and blood pressure.

            The kidney not only regulates fluid and electrolyte balance but also functions as an endocrine organ. For instance, it is the major source of circulating erythropoietin and renin. Despite currently available therapies, there is a marked increase in cardiovascular morbidity and mortality among patients suffering from end-stage renal disease. We hypothesized that the current understanding of the endocrine function of the kidney was incomplete and that the organ might secrete additional proteins with important biological roles. Here we report the identification of a novel flavin adenine dinucleotide-dependent amine oxidase (renalase) that is secreted into the blood by the kidney and metabolizes catecholamines in vitro (renalase metabolizes dopamine most efficiently, followed by epinephrine, and then norepinephrine). In humans, renalase gene expression is highest in the kidney but is also detectable in the heart, skeletal muscle, and the small intestine. The plasma concentration of renalase is markedly reduced in patients with end-stage renal disease, as compared with healthy subjects. Renalase infusion in rats caused a decrease in cardiac contractility, heart rate, and blood pressure and prevented a compensatory increase in peripheral vascular tone. These results identify renalase as what we believe to be a novel amine oxidase that is secreted by the kidney, circulates in blood, and modulates cardiac function and systemic blood pressure.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Immunosuppressive treatment protects against angiotensin II-induced renal damage.

              Angiotensin (Ang) II promotes renal infiltration by immunocompetent cells in double-transgenic rats (dTGRs) harboring both human renin and angiotensinogen genes. To elucidate disease mechanisms, we investigated whether or not dexamethasone (DEXA) immunosuppression ameliorates renal damage. Untreated dTGRs developed hypertension, renal damage, and 50% mortality at 7 weeks. DEXA reduced albuminuria, renal fibrosis, vascular reactive oxygen stress, and prevented mortality, independent of blood pressure. In dTGR kidneys, p22phox immunostaining co-localized with macrophages and partially with T cells. dTGR dendritic cells expressed major histocompatibility complex II and CD86, indicating maturation. DEXA suppressed major histocompatibility complex II+, CD86+, dendritic, and T-cell infiltration. In additional experiments, we treated dTGRs with mycophenolate mofetil to inhibit T- and B-cell proliferation. Reno-protective actions of mycophenolate mofetil and its effect on dendritic and T cells were similar to those obtained with DEXA. We next investigated whether or not Ang II directly promotes dendritic cell maturation in vitro. Ang II did not alter CD80, CD83, and MHC II expression, but increased CCR7 expression and cell migration. To explore the role of tumor necrosis factor (TNF)-alpha on dendritic cell maturation in vivo, we treated dTGRs with the soluble TNF-alpha receptor etanercept. This treatment had no effect on blood pressure, but decreased albuminuria, nuclear factor-kappaB activation, and infiltration of all immunocompetent cells. These data suggest that immunosuppression prevents dendritic cell maturation and T-cell infiltration in a nonimmune model of Ang II-induced renal damage. Ang II induces dendritic migration directly, whereas in vivo TNF-alpha is involved in dendritic cell infiltration and maturation. Thus, Ang II may initiate events leading to innate and acquired immune response.
                Bookmark

                Author and article information

                Journal
                KBR
                Kidney Blood Press Res
                10.1159/issn.1420-4096
                Kidney and Blood Pressure Research
                S. Karger AG
                1420-4096
                1423-0143
                2015
                December 2015
                29 November 2015
                : 40
                : 6
                : 605-613
                Affiliations
                aDepartment of Cardiology, First Affiliated Hospital of Medical College, Xi'an Jiaotong University, bKey Laboratory of Molecular Cardiology of Shaanxi Province, cDepartment of Cardiology, Xi'an NO.1 Hospital, Xi'an, P. R. China
                Author notes
                *Jian-Jun Mu, PhD, Department of Cardiology, First Affiliated Hospital of Medical College, Xian Jiaotong University,, No.277, Yanta West Road, Xi'an, 710061 (P. R. China), Tel. +86-29-85323804, E-Mail mujjun@163.com
                Article
                368536 Kidney Blood Press Res 2015;40:605-613
                10.1159/000368536
                26619289
                98425b2a-df3b-48b7-a7a5-cfffa8bd36f3
                © 2015 The Author(s) Published by S. Karger AG, Basel

                This article is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND). Usage and distribution for commercial purposes as well as any distribution of modified material requires written permission. Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug. Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.

                History
                : 22 October 2015
                Page count
                Figures: 4, Tables: 2, References: 31, Pages: 9
                Categories
                Original Paper

                Cardiovascular Medicine,Nephrology
                Renalase,Renin-angiotensin system,Salt,Proteinuria
                Cardiovascular Medicine, Nephrology
                Renalase, Renin-angiotensin system, Salt, Proteinuria

                Comments

                Comment on this article