10
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Essential role of the Dishevelled DEP domain in a Wnt-dependent human-cell-based complementation assay

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          ABSTRACT

          Dishevelled (DVL) assembles Wnt signalosomes through dynamic head-to-tail polymerisation by means of its DIX domain. It thus transduces Wnt signals to cytoplasmic effectors including β-catenin, to control cell fates during normal development, tissue homeostasis and also in cancer. To date, most functional studies of Dishevelled relied on its Wnt-independent signalling activity resulting from overexpression, which is sufficient to trigger polymerisation, bypassing the requirement for Wnt signals. Here, we generate a human cell line devoid of endogenous Dishevelled (DVL1– DVL3), which lacks Wnt signal transduction to β-catenin. However, Wnt responses can be restored by DVL2 stably re-expressed at near-endogenous levels. Using this assay to test mutant DVL2, we show that its DEP domain is essential, whereas its PDZ domain is dispensable, for signalling to β-catenin. Our results imply two mutually exclusive functions of the DEP domain in Wnt signal transduction – binding to Frizzled to recruit Dishevelled to the receptor complex, and dimerising to cross-link DIX domain polymers for signalosome assembly. Our assay avoids the caveats associated with overexpressing Dishevelled, and provides a powerful tool for rigorous functional tests of this pivotal human signalling protein.

          Abstract

          Summary: A physiological complementation assay in Dishevelled null-mutant human cells establishes an essential function of the DEP domain of Dishevelled in its binding to Frizzled for signal transduction to β-catenin.

          Related collections

          Most cited references46

          • Record: found
          • Abstract: found
          • Article: not found

          Proximal events in Wnt signal transduction.

          The Wnt family of secreted ligands act through many receptors to stimulate distinct intracellular signalling pathways in embryonic development, in adults and in disease processes. Binding of Wnt to the Frizzled family of receptors and to low density lipoprotein receptor-related protein 5 (LRP5) or LRP6 co-receptors stimulates the intracellular Wnt-beta-catenin signalling pathway, which regulates beta-cateninstability and context-dependent transcription. This signalling pathway controls many processes, such as cell fate determination, cell proliferation and self-renewal of stem and progenitor cells. Intriguingly, the transmembrane receptor Tyr kinases Ror2 and Ryk, as well as Frizzledreceptors that act independently of LRP5 or LRP6, function as receptors for Wnt and activate beta-catenin-independent pathways. This leads to changes in cell movement and polarity and to the antagonism of the beta-catenin pathway.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Wnt induces LRP6 signalosomes and promotes dishevelled-dependent LRP6 phosphorylation.

            Multiple signaling pathways, including Wnt signaling, participate in animal development, stem cell biology, and human cancer. Although many components of the Wnt pathway have been identified, unresolved questions remain as to the mechanism by which Wnt binding to its receptors Frizzled and Low-density lipoprotein receptor-related protein 6 (LRP6) triggers downstream signaling events. With live imaging of vertebrate cells, we show that Wnt treatment quickly induces plasma membrane-associated LRP6 aggregates. LRP6 aggregates are phosphorylated and can be detergent-solubilized as ribosome-sized multiprotein complexes. Phospho-LRP6 aggregates contain Wnt-pathway components but no common vesicular traffic markers except caveolin. The scaffold protein Dishevelled (Dvl) is required for LRP6 phosphorylation and aggregation. We propose that Wnts induce coclustering of receptors and Dvl in LRP6-signalosomes, which in turn triggers LRP6 phosphorylation to promote Axin recruitment and beta-catenin stabilization.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              LDL-receptor-related proteins in Wnt signal transduction.

              The Wnt family of secreted signalling molecules are essential in embryo development and tumour formation. The Frizzled (Fz) family of serpentine receptors function as Wnt receptors, but how Fz proteins transduce signalling is not understood. In Drosophila, arrow phenocopies the wingless (DWnt-1) phenotype, and encodes a transmembrane protein that is homologous to two members of the mammalian low-density lipoprotein receptor (LDLR)-related protein (LRP) family, LRP5 and LRP6 (refs 12-15). Here we report that LRP6 functions as a co-receptor for Wnt signal transduction. In Xenopus embryos, LRP6 activated Wnt-Fz signalling, and induced Wnt responsive genes, dorsal axis duplication and neural crest formation. An LRP6 mutant lacking the carboxyl intracellular domain blocked signalling by Wnt or Wnt-Fz, but not by Dishevelled or beta-catenin, and inhibited neural crest development. The extracellular domain of LRP6 bound Wnt-1 and associated with Fz in a Wnt-dependent manner. Our results indicate that LRP6 may be a component of the Wnt receptor complex.
                Bookmark

                Author and article information

                Journal
                J Cell Sci
                J. Cell. Sci
                JCS
                joces
                Journal of Cell Science
                The Company of Biologists Ltd
                0021-9533
                1477-9137
                15 October 2016
                15 October 2016
                : 129
                : 20
                : 3892-3902
                Affiliations
                [1 ]MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus , Francis Crick Avenue, Cambridge CB2 0QH, UK
                [2 ]Leslie Dan Faculty of Pharmacy, Room 901, University of Toronto , 144 College Street, Toronto, Ontario, CanadaM5S 3M2
                Author notes
                Author information
                http://orcid.org/0000-0002-7170-8706
                Article
                JCS195685
                10.1242/jcs.195685
                5087658
                27744318
                98469a42-6bed-42f8-abf0-517794ea9028
                © 2016. Published by The Company of Biologists Ltd

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution and reproduction in any medium provided that the original work is properly attributed.

                History
                : 22 July 2016
                : 30 August 2016
                Funding
                Funded by: Medical Research Council, http://dx.doi.org/10.13039/501100000265;
                Award ID: MC_U105192713
                Funded by: Cancer Research UK, http://dx.doi.org/10.13039/501100000289;
                Award ID: C7379/A15291
                Funded by: Canadian Institutes of Health Research, http://dx.doi.org/10.13039/501100000024;
                Award ID: 273548
                Categories
                Research Article

                Cell biology
                dishevelled,dep domain,pdz domain,frizzled
                Cell biology
                dishevelled, dep domain, pdz domain, frizzled

                Comments

                Comment on this article