5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Mechanical signal influence on mesenchymal stem cell fate is enhanced by incorporation of refractory periods into the loading regimen.

      Journal of Biomechanics
      Adipocytes, cytology, physiology, Adipogenesis, Animals, Cell Differentiation, Cell Line, Mechanotransduction, Cellular, Mesenchymal Stromal Cells, Mice, Stress, Mechanical

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Mechanical signals of both low and high intensity are inhibitory to fat and anabolic to bone in vivo, and have been shown to directly affect mesenchymal stem cell pools from which fat and bone precursors emerge. To identify an idealized mechanical regimen which can regulate MSC fate, low intensity vibration (LIV; <10 microstrain, 90 Hz) and high magnitude strain (HMS; 20,000 microstrain, 0.17 Hz) were examined in MSC undergoing adipogenesis. Two x twenty minute bouts of either LIV or HMS suppressed adipogenesis when there was at least a 1h refractory period between bouts; this effect was enhanced when the rest period was extended to 3h. Mechanical efficacy to inhibit adipogenesis increased with additional loading bouts if a refractory period was incorporated. Mechanical suppression of adipogenesis with LIV involved inhibition of GSK3β with subsequent activation of β-catenin as has been shown for HMS. These data indicate that mechanical biasing of MSC lineage selection is more dependent on event scheduling than on load magnitude or duration. As such, a full day of rest should not be required to "reset" the mechanical responsiveness of MSCs, and suggests that incorporating several brief mechanical challenges within a 24h period may improve salutary endpoints in vivo. That two diverse mechanical inputs are enhanced by repetition after a refractory period suggests that rapid cellular adaptation can be targeted. Published by Elsevier Ltd.

          Related collections

          Author and article information

          Journal
          21130997
          3042527
          10.1016/j.jbiomech.2010.11.022

          Chemistry
          Adipocytes,cytology,physiology,Adipogenesis,Animals,Cell Differentiation,Cell Line,Mechanotransduction, Cellular,Mesenchymal Stromal Cells,Mice,Stress, Mechanical

          Comments

          Comment on this article