52
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Cholesteryl ester transfer protein: at the heart of the action of lipid-modulating therapy with statins, fibrates, niacin, and cholesteryl ester transfer protein inhibitors

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Subnormal plasma levels of high-density lipoprotein cholesterol (HDL-C) constitute a major cardiovascular risk factor; raising low HDL-C levels may therefore reduce the residual cardiovascular risk that frequently presents in dyslipidaemic subjects despite statin therapy. Cholesteryl ester transfer protein (CETP), a key modulator not only of the intravascular metabolism of HDL and apolipoprotein (apo) A-I but also of triglyceride (TG)-rich particles and low-density lipoprotein (LDL), mediates the transfer of cholesteryl esters from HDL to pro-atherogenic apoB-lipoproteins, with heterotransfer of TG mainly from very low-density lipoprotein to HDL. Cholesteryl ester transfer protein activity is elevated in the dyslipidaemias of metabolic disease involving insulin resistance and moderate to marked hypertriglyceridaemia, and is intimately associated with premature atherosclerosis and high cardiovascular risk. Cholesteryl ester transfer protein inhibition therefore presents a preferential target for elevation of HDL-C and reduction in atherosclerosis. This review appraises recent evidence for a central role of CETP in the action of current lipid-modulating agents with HDL-raising potential, i.e. statins, fibrates, and niacin, and compares their mechanisms of action with those of pharmacological agents under development which directly inhibit CETP. New CETP inhibitors, such as dalcetrapib and anacetrapib, are targeted to normalize HDL/apoA-I levels and anti-atherogenic activities of HDL particles. Further studies of these CETP inhibitors, in particular in long-term, large-scale outcome trials, will provide essential information on their safety and efficacy in reducing residual cardiovascular risk.

          Related collections

          Most cited references125

          • Record: found
          • Abstract: found
          • Article: not found

          Effect of very high-intensity statin therapy on regression of coronary atherosclerosis: the ASTEROID trial.

          Prior intravascular ultrasound (IVUS) trials have demonstrated slowing or halting of atherosclerosis progression with statin therapy but have not shown convincing evidence of regression using percent atheroma volume (PAV), the most rigorous IVUS measure of disease progression and regression. To assess whether very intensive statin therapy could regress coronary atherosclerosis as determined by IVUS imaging. Prospective, open-label blinded end-points trial (A Study to Evaluate the Effect of Rosuvastatin on Intravascular Ultrasound-Derived Coronary Atheroma Burden [ASTEROID]) was performed at 53 community and tertiary care centers in the United States, Canada, Europe, and Australia. A motorized IVUS pullback was used to assess coronary atheroma burden at baseline and after 24 months of treatment. Each pair of baseline and follow-up IVUS assessments was analyzed in a blinded fashion. Between November 2002 and October 2003, 507 patients had a baseline IVUS examination and received at least 1 dose of study drug. After 24 months, 349 patients had evaluable serial IVUS examinations. All patients received intensive statin therapy with rosuvastatin, 40 mg/d. Two primary efficacy parameters were prespecified: the change in PAV and the change in nominal atheroma volume in the 10-mm subsegment with the greatest disease severity at baseline. A secondary efficacy variable, change in normalized total atheroma volume for the entire artery, was also prespecified. The mean (SD) baseline low-density lipoprotein cholesterol (LDL-C) level of 130.4 (34.3) mg/dL declined to 60.8 (20.0) mg/dL, a mean reduction of 53.2% (P<.001). Mean (SD) high-density lipoprotein cholesterol (HDL-C) level at baseline was 43.1 (11.1) mg/dL, increasing to 49.0 (12.6) mg/dL, an increase of 14.7% (P<.001). The mean (SD) change in PAV for the entire vessel was -0.98% (3.15%), with a median of -0.79% (97.5% CI, -1.21% to -0.53%) (P<.001 vs baseline). The mean (SD) change in atheroma volume in the most diseased 10-mm subsegment was -6.1 (10.1) mm3, with a median of -5.6 mm3 (97.5% CI, -6.8 to -4.0 mm3) (P<.001 vs baseline). Change in total atheroma volume showed a 6.8% median reduction; with a mean (SD) reduction of -14.7 (25.7) mm3, with a median of -12.5 mm3 (95% CI, -15.1 to -10.5 mm3) (P<.001 vs baseline). Adverse events were infrequent and similar to other statin trials. Very high-intensity statin therapy using rosuvastatin 40 mg/d achieved an average LDL-C of 60.8 mg/dL and increased HDL-C by 14.7%, resulting in significant regression of atherosclerosis for all 3 prespecified IVUS measures of disease burden. Treatment to LDL-C levels below currently accepted guidelines, when accompanied by significant HDL-C increases, can regress atherosclerosis in coronary disease patients. Further studies are needed to determine the effect of the observed changes on clinical outcome. ClinicalTrials.gov Identifier: NCT00240318.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Mechanism of action of fibrates on lipid and lipoprotein metabolism.

            Treatment with fibrates, a widely used class of lipid-modifying agents, results in a substantial decrease in plasma triglycerides and is usually associated with a moderate decrease in LDL cholesterol and an increase in HDL cholesterol concentrations. Recent investigations indicate that the effects of fibrates are mediated, at least in part, through alterations in transcription of genes encoding for proteins that control lipoprotein metabolism. Fibrates activate specific transcription factors belonging to the nuclear hormone receptor superfamily, termed peroxisome proliferator-activated receptors (PPARs). The PPAR-alpha form mediates fibrate action on HDL cholesterol levels via transcriptional induction of synthesis of the major HDL apolipoproteins, apoA-I and apoA-II. Fibrates lower hepatic apoC-III production and increase lipoprotein lipase--mediated lipolysis via PPAR. Fibrates stimulate cellular fatty acid uptake, conversion to acyl-CoA derivatives, and catabolism by the beta-oxidation pathways, which, combined with a reduction in fatty acid and triglyceride synthesis, results in a decrease in VLDL production. In summary, both enhanced catabolism of triglyceride-rich particles and reduced secretion of VLDL underlie the hypotriglyceridemic effect of fibrates, whereas their effect on HDL metabolism is associated with changes in HDL apolipoprotein expression.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              High-density lipoprotein cholesterol and cardiovascular disease. Four prospective American studies.

              The British Regional Heart Study (BRHS) reported in 1986 that much of the inverse relation of high-density lipoprotein cholesterol (HDLC) and incidence of coronary heart disease was eliminated by covariance adjustment. Using the proportional hazards model and adjusting for age, blood pressure, smoking, body mass index, and low-density lipoprotein cholesterol, we analyzed this relation separately in the Framingham Heart Study (FHS), Lipid Research Clinics Prevalence Mortality Follow-up Study (LRCF) and Coronary Primary Prevention Trial (CPPT), and Multiple Risk Factor Intervention Trial (MRFIT). In CPPT and MRFIT (both randomized trials in middle-age high-risk men), only the control groups were analyzed. A 1-mg/dl (0.026 mM) increment in HDLC was associated with a significant coronary heart disease risk decrement of 2% in men (FHS, CPPT, and MRFIT) and 3% in women (FHS). In LRCF, where only fatal outcomes were documented, a 1-mg/dl increment in HDLC was associated with significant 3.7% (men) and 4.7% (women) decrements in cardiovascular disease mortality rates. The 95% confidence intervals for these decrements in coronary heart and cardiovascular disease risk in the four studies overlapped considerably, and all contained the range 1.9-2.9%. HDLC levels were essentially unrelated to non-cardiovascular disease mortality. When differences in analytic methodology were eliminated, a consistent inverse relation of HDLC levels and coronary heart disease event rates was apparent in BRHS as well as in the four American studies.
                Bookmark

                Author and article information

                Journal
                Eur Heart J
                eurheartj
                ehj
                European Heart Journal
                Oxford University Press
                0195-668X
                1522-9645
                January 2010
                12 October 2009
                12 October 2009
                : 31
                : 2
                : 149-164
                Affiliations
                INSERM, UMR S939, Dyslipidemia, Inflammation and Atherosclerosis Research Unit, simpleUniversity Pierre and Marie Curie-Paris 6 , Pavillon Benjamin Delessert, Hôpital de la Pitié, 83, Boulevard de l'Hôpital, F-75013 Paris Cedex 13, France
                Author notes
                [* ]Corresponding author. Tel: +33 1 42 17 78 78, Fax: +33 1 45 82 81 98, Email: john.chapman@ 123456upmc.fr
                Article
                ehp399
                10.1093/eurheartj/ehp399
                2806550
                19825813
                984ca2b2-333f-42a3-b6a3-70857582df62
                Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2009. For permissions please email: journals.permissions@oxfordjournals.org

                The online version of this article has been published under an open access model. Users are entitled to use, reproduce, disseminate, or display the open access version of this article for non-commercial purposes provided that the original authorship is properly and fully attributed; the Journal, Learned Society and Oxford University Press are attributed as the original place of publication with correct citation details given; if an article is subsequently reproduced or disseminated not in its entirety but only in part or as a derivative work this must be clearly indicated. For commercial re-use, please contact journals.permissions@oxfordjournals.org

                History
                : 5 March 2009
                : 6 July 2009
                : 27 August 2009
                Categories
                Review

                Cardiovascular Medicine
                hdl,cholesteryl ester transfer protein,cholesteryl ester transfer protein inhibitor,triglycerides,reverse cholesterol transport,atherosclerosis

                Comments

                Comment on this article