22
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Fatty acid composition, antioxidant and antibacterial properties of the microwave aqueous extract of three varieties of Labisia pumila Benth

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          The present study was conducted in order to evaluate the fatty acid profile, anti-oxidant and anti-bacterial activities from the microwave aqueous extract of the leaves of three different varieties of Labisia pumila Benth.

          Results

          The chemical analysis of the extract showed that fatty acids (palmitic, palmitoleic, stearic, oleic, linoleic and α-linolenic) acid as the main components in three varieties of L. pumila leaves. Furthermore, the obtained results of the anti-oxidant revealed that L. pumila var. alata contained higher anti-oxidative activities compared to var. pumila and var. lanceolata. However, these values were lower than the tested anti-oxidant standards. On the other hand, the aqueous leaf extracts in all three varieties of L. pumila were also found to inhibit a variable degree of antibacterial activities against eight bacteria (four Gram-positive and four Gram-negative bacteria).

          Conclusions

          In this study, it was observed the leaves of three varieties of L. pumila exhibited variable patterns of fatty acids and the microwave aqueous extraction possess anti-oxidant and anti-bacterial activities.

          Related collections

          Most cited references42

          • Record: found
          • Abstract: found
          • Article: not found

          Antibacterial free fatty acids: activities, mechanisms of action and biotechnological potential.

          Amongst the diverse and potent biological activities of free fatty acids (FFAs) is the ability to kill or inhibit the growth of bacteria. The antibacterial properties of FFAs are used by many organisms to defend against parasitic or pathogenic bacteria. Whilst their antibacterial mode of action is still poorly understood, the prime target of FFA action is the cell membrane, where FFAs disrupt the electron transport chain and oxidative phosphorylation. Besides interfering with cellular energy production, FFA action may also result from the inhibition of enzyme activity, impairment of nutrient uptake, generation of peroxidation and auto-oxidation degradation products or direct lysis of bacterial cells. Their broad spectrum of activity, non-specific mode of action and safety makes them attractive as antibacterial agents for various applications in medicine, agriculture and food preservation, especially where the use of conventional antibiotics is undesirable or prohibited. Moreover, the evolution of inducible FFA-resistant phenotypes is less problematic than with conventional antibiotics. The potential for commercial or biomedical exploitation of antibacterial FFAs, especially for those from natural sources, is discussed.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Natural products as leads to anticancer drugs.

            Throughout history, natural products have afforded a rich source of compounds that have found many applications in the fields of medicine, pharmacy and biology. Within the sphere of cancer, a number of important new commercialised drugs have been obtained from natural sources, by structural modification of natural compounds, or by the synthesis of new compounds, designed following a natural compound as model. The search for improved cytotoxic agents continues to be an important line in the discovery of modern anticancer drugs. The huge structural diversity of natural compounds and their bioactivity potential have meant that several products isolated from plants, marine flora and microorganisms can serve as "lead" compounds for improvement of their therapeutic potential by molecular modification. Additionally, semisynthesis processes of new compounds, obtained by molecular modification of the functional groups of lead compounds, are able to generate structural analogues with greater pharmacological activity and with fewer side effects. These processes, complemented with high-throughput screening protocols, combinatorial chemistry, computational chemistry and bioinformatics are able to afford compounds that are far more efficient than those currently used in clinical practice. Combinatorial biosynthesis is also applied for the modification of natural microbial products. Likewise, advances in genomics and the advent of biotechnology have improved both the discovery and production of new natural compounds.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Antimicrobial effects of Finnish plant extracts containing flavonoids and other phenolic compounds.

              Plant phenolics, especially dietary flavonoids, are currently of growing interest owing to their supposed functional properties in promoting human health. Antimicrobial screening of 13 phenolic substances and 29 extracts prepared from Finnish plant materials against selected microbes was conducted in this study. The tests were carried out using diffusion methods with four to nine microbial species (Aspergillus niger, Bacillus subtilis, Candida albicans, Escherichia coli, Micrococcus luteus, Pseudomonas aeruginosa, Saccharomyces cerevisiae, Staphylococcus aureus and Staphylococcus epidermidis). Flavone, quercetin and naringenin were effective in inhibiting the growth of the organisms. The most active plant extracts were purple loosestrife (Lythrum salicaria L.) against Candida albicans, meadowsweet (Filipendula ulmaria (L.) Maxim.), willow herb (Epilobium angustifolium L.), cloudberry (Rubus chamaemorus L.) and raspberry (Rubus idaeus L.) against bacteria, and white birch (Betula pubescens Ehrh.), pine (Pinus sylvestris L.) and potato (Solanum tuberosum. L.) against gram-positive Staphylococcus aureus.
                Bookmark

                Author and article information

                Contributors
                Ehsan_b_karimi@yahoo.com
                hawazej@gmail.com
                upmali@yahoo.com
                mehdiebrahimii@gmail.com
                Journal
                Biol Res
                Biol. Res
                Biological Research
                BioMed Central (London )
                0716-9760
                0717-6287
                23 January 2015
                23 January 2015
                2015
                : 48
                : 1
                : 9
                Affiliations
                [ ]Department of Crop Science, Faculty of Agriculture, Universiti Putra Malaysia, 43400, Serdang, Selangor Malaysia
                [ ]Department of Veterinary Preclinical Sciences, Faculty of Veterinary Medicine, 43400 Serdang, Selangor Malaysia
                Article
                85
                10.1186/0717-6287-48-9
                4417259
                25761515
                9855a991-3470-4ebd-aa64-84674b5f1804
                © Karimi et al.; licensee BioMed Central. 2015

                This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

                History
                : 23 October 2014
                : 6 January 2015
                Categories
                Research Article
                Custom metadata
                © The Author(s) 2015

                fatty acid composition,microwave aqueous extraction,anti-oxidant activities,anti-bacterial activities

                Comments

                Comment on this article