5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Major Metabolites and Microbial Community of Fermented Black Glutinous Rice Wine With Different Starters

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Black glutinous rice wine (BGRW) is a traditional Chinese rice wine that is brewed using multiple strains. However, the roles of these microorganisms, particularly their contributions to aroma formation, are poorly understood. Accordingly, the main goal of this study was to determine the microbial communities and major metabolites of different traditional fermentation starters. Anshun (AS) starter and Xingyi (XY) starter were used for BGRW to provide insight into their potential contributions to the variation in flavor and aroma. High-throughput sequencing of the microbial community using the Illumina MiSeq platform revealed significant differences during fermentation between the two starter groups. Pediococcus, Leuconostoc, and Bacillus were the dominant bacterial genera in the AS group, whereas Leuconostoc, Pediococcus, and Gluconobacter were the dominant genera in the XY group. In addition, Rhizopus, Saccharomyces, and Saccharomycopsis were the predominant fungal genera detected in both samples. The major metabolites in the two groups were identified by high-performance liquid chromatography and headspace-solid-phase microextraction gas chromatography–mass spectrometry. A total of seven organic acids along with 47 (AS) and 43 (XY) volatile metabolites were detected, among which lactic acid was the primary organic acid, and esters were the largest group in both types of wine. Principal components analysis further revealed significant differences in the dynamic succession of metabolites between the two samples. Correlation analysis showed that 22 and 17 microorganisms were strongly correlated with the production of major metabolites in AS and XY, respectively. Among them, Pediococcus, Leuconostoc, Lactobacillus, Lactococcus, and Streptococcus were shown to play crucial roles in metabolite synthesis. Overall, this study can provide a valuable resource for the further development and utilization of starters to improve the aromatic quality of BGRW.

          Related collections

          Most cited references66

          • Record: found
          • Abstract: found
          • Article: not found

          FLASH: fast length adjustment of short reads to improve genome assemblies.

          Next-generation sequencing technologies generate very large numbers of short reads. Even with very deep genome coverage, short read lengths cause problems in de novo assemblies. The use of paired-end libraries with a fragment size shorter than twice the read length provides an opportunity to generate much longer reads by overlapping and merging read pairs before assembling a genome. We present FLASH, a fast computational tool to extend the length of short reads by overlapping paired-end reads from fragment libraries that are sufficiently short. We tested the correctness of the tool on one million simulated read pairs, and we then applied it as a pre-processor for genome assemblies of Illumina reads from the bacterium Staphylococcus aureus and human chromosome 14. FLASH correctly extended and merged reads >99% of the time on simulated reads with an error rate of <1%. With adequately set parameters, FLASH correctly merged reads over 90% of the time even when the reads contained up to 5% errors. When FLASH was used to extend reads prior to assembly, the resulting assemblies had substantially greater N50 lengths for both contigs and scaffolds. The FLASH system is implemented in C and is freely available as open-source code at http://www.cbcb.umd.edu/software/flash. t.magoc@gmail.com.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            454 Pyrosequencing analyses of forest soils reveal an unexpectedly high fungal diversity.

            * Soil fungi play a major role in ecological and biogeochemical processes in forests. Little is known, however, about the structure and richness of different fungal communities and the distribution of functional ecological groups (pathogens, saprobes and symbionts). * Here, we assessed the fungal diversity in six different forest soils using tag-encoded 454 pyrosequencing of the nuclear ribosomal internal transcribed spacer-1 (ITS-1). No less than 166 350 ITS reads were obtained from all samples. In each forest soil sample (4 g), approximately 30 000 reads were recovered, corresponding to around 1000 molecular operational taxonomic units. * Most operational taxonomic units (81%) belonged to the Dikarya subkingdom (Ascomycota and Basidiomycota). Richness, abundance and taxonomic analyses identified the Agaricomycetes as the dominant fungal class. The ITS-1 sequences (73%) analysed corresponded to only 26 taxa. The most abundant operational taxonomic units showed the highest sequence similarity to Ceratobasidium sp., Cryptococcus podzolicus, Lactarius sp. and Scleroderma sp. * This study validates the effectiveness of high-throughput 454 sequencing technology for the survey of soil fungal diversity. The large proportion of unidentified sequences, however, calls for curated sequence databases. The use of pyrosequencing on soil samples will accelerate the study of the spatiotemporal dynamics of fungal communities in forest ecosystems.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              MiFish, a set of universal PCR primers for metabarcoding environmental DNA from fishes: detection of more than 230 subtropical marine species

              We developed a set of universal PCR primers (MiFish-U/E) for metabarcoding environmental DNA (eDNA) from fishes. Primers were designed using aligned whole mitochondrial genome (mitogenome) sequences from 880 species, supplemented by partial mitogenome sequences from 160 elasmobranchs (sharks and rays). The primers target a hypervariable region of the 12S rRNA gene (163–185 bp), which contains sufficient information to identify fishes to taxonomic family, genus and species except for some closely related congeners. To test versatility of the primers across a diverse range of fishes, we sampled eDNA from four tanks in the Okinawa Churaumi Aquarium with known species compositions, prepared dual-indexed libraries and performed paired-end sequencing of the region using high-throughput next-generation sequencing technologies. Out of the 180 marine fish species contained in the four tanks with reference sequences in a custom database, we detected 168 species (93.3%) distributed across 59 families and 123 genera. These fishes are not only taxonomically diverse, ranging from sharks and rays to higher teleosts, but are also greatly varied in their ecology, including both pelagic and benthic species living in shallow coastal to deep waters. We also sampled natural seawaters around coral reefs near the aquarium and detected 93 fish species using this approach. Of the 93 species, 64 were not detected in the four aquarium tanks, rendering the total number of species detected to 232 (from 70 families and 152 genera). The metabarcoding approach presented here is non-invasive, more efficient, more cost-effective and more sensitive than the traditional survey methods. It has the potential to serve as an alternative (or complementary) tool for biodiversity monitoring that revolutionizes natural resource management and ecological studies of fish communities on larger spatial and temporal scales.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Microbiol
                Front Microbiol
                Front. Microbiol.
                Frontiers in Microbiology
                Frontiers Media S.A.
                1664-302X
                17 April 2020
                2020
                : 11
                : 593
                Affiliations
                [1] 1School of Liquor and Food Engineering, Guizhou University , Guiyang, China
                [2] 2Guizhou Key Laboratory for Fermentation Engineering and Biopharmaceuticals, Guizhou University , Guiyang, China
                Author notes

                Edited by: Yang Deng, Qingdao Agricultural University, China

                Reviewed by: Guoliang Yan, China Agricultural University, China; Madhumita Barooah, Assam Agricultural University, India

                *Correspondence: Wei Su, wsu@ 123456gzu.edu.cn

                This article was submitted to Food Microbiology, a section of the journal Frontiers in Microbiology

                Article
                10.3389/fmicb.2020.00593
                7180510
                32362879
                9862056c-6d68-46e3-b040-97536bb3e318
                Copyright © 2020 Jiang, Su, Mu and Mu.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 31 December 2019
                : 18 March 2020
                Page count
                Figures: 7, Tables: 0, Equations: 0, References: 76, Pages: 13, Words: 0
                Categories
                Microbiology
                Original Research

                Microbiology & Virology
                black glutinous rice wine,microbial diversity,high-throughput sequencing,flavor,correlation

                Comments

                Comment on this article