14
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Defining and searching for structural motifs using DeepView/Swiss-PdbViewer

      product-review

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Today, recognition and classification of sequence motifs and protein folds is a mature field, thanks to the availability of numerous comprehensive and easy to use software packages and web-based services. Recognition of structural motifs, by comparison, is less well developed and much less frequently used, possibly due to a lack of easily accessible and easy to use software.

          Results

          In this paper, we describe an extension of DeepView/Swiss-PdbViewer through which structural motifs may be defined and searched for in large protein structure databases, and we show that common structural motifs involved in stabilizing protein folds are present in evolutionarily and structurally unrelated proteins, also in deeply buried locations which are not obviously related to protein function.

          Conclusions

          The possibility to define custom motifs and search for their occurrence in other proteins permits the identification of recurrent arrangements of residues that could have structural implications. The possibility to do so without having to maintain a complex software/hardware installation on site brings this technology to experts and non-experts alike.

          Related collections

          Most cited references44

          • Record: found
          • Abstract: found
          • Article: not found

          PISCES: a protein sequence culling server.

          PISCES is a public server for culling sets of protein sequences from the Protein Data Bank (PDB) by sequence identity and structural quality criteria. PISCES can provide lists culled from the entire PDB or from lists of PDB entries or chains provided by the user. The sequence identities are obtained from PSI-BLAST alignments with position-specific substitution matrices derived from the non-redundant protein sequence database. PISCES therefore provides better lists than servers that use BLAST, which is unable to identify many relationships below 40% sequence identity and often overestimates sequence identity by aligning only well-conserved fragments. PDB sequences are updated weekly. PISCES can also cull non-PDB sequences provided by the user as a list of GenBank identifiers, a FASTA format file, or BLAST/PSI-BLAST output.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Least-squares fitting of two 3-d point sets.

            Two point sets {pi} and {p'i}; i = 1, 2,..., N are related by p'i = Rpi + T + Ni, where R is a rotation matrix, T a translation vector, and Ni a noise vector. Given {pi} and {p'i}, we present an algorithm for finding the least-squares solution of R and T, which is based on the singular value decomposition (SVD) of a 3 × 3 matrix. This new algorithm is compared to two earlier algorithms with respect to computer time requirements.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              CATH--a hierarchic classification of protein domain structures.

              Protein evolution gives rise to families of structurally related proteins, within which sequence identities can be extremely low. As a result, structure-based classifications can be effective at identifying unanticipated relationships in known structures and in optimal cases function can also be assigned. The ever increasing number of known protein structures is too large to classify all proteins manually, therefore, automatic methods are needed for fast evaluation of protein structures. We present a semi-automatic procedure for deriving a novel hierarchical classification of protein domain structures (CATH). The four main levels of our classification are protein class (C), architecture (A), topology (T) and homologous superfamily (H). Class is the simplest level, and it essentially describes the secondary structure composition of each domain. In contrast, architecture summarises the shape revealed by the orientations of the secondary structure units, such as barrels and sandwiches. At the topology level, sequential connectivity is considered, such that members of the same architecture might have quite different topologies. When structures belonging to the same T-level have suitably high similarities combined with similar functions, the proteins are assumed to be evolutionarily related and put into the same homologous superfamily. Analysis of the structural families generated by CATH reveals the prominent features of protein structure space. We find that nearly a third of the homologous superfamilies (H-levels) belong to ten major T-levels, which we call superfolds, and furthermore that nearly two-thirds of these H-levels cluster into nine simple architectures. A database of well-characterised protein structure families, such as CATH, will facilitate the assignment of structure-function/evolution relationships to both known and newly determined protein structures.
                Bookmark

                Author and article information

                Journal
                BMC Bioinformatics
                BMC Bioinformatics
                BMC Bioinformatics
                BioMed Central
                1471-2105
                2012
                23 July 2012
                : 13
                : 173
                Affiliations
                [1 ]Vital-IT Group, SIB Swiss Institute of Bioinformatics, CH-1015, Lausanne, Switzerland
                [2 ]Molecular Modelling Group, SIB Swiss Institute of Bioinformatics, CH-1015, Lausanne, Switzerland
                Article
                1471-2105-13-173
                10.1186/1471-2105-13-173
                3436773
                22823337
                98676d1a-4be3-4c7f-93a8-bd12d1e94383
                Copyright ©2012 Johansson et al.; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 15 September 2011
                : 6 July 2012
                Categories
                Software

                Bioinformatics & Computational biology
                Bioinformatics & Computational biology

                Comments

                Comment on this article