8
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Hyperactivity of the transcription factor Nrf2 causes metabolic reprogramming in mouse esophagus

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Mutations in the genes encoding nuclear factor (erythroid-derived 2)-like 2 (NRF2), Kelch-like ECH-associated protein 1 (KEAP1), and cullin 3 (CUL3) are commonly observed in human esophageal squamous cell carcinoma (ESCC) and result in activation of the NRF2 signaling pathway. Moreover, hyperactivity of the transcription factor Nrf2 has been found to cause esophageal hyperproliferation and hyperkeratosis in mice. However, the underlying mechanism is unclear. In this study, we aimed to understand the molecular mechanisms of esophageal hyperproliferation in mice due to hyperactive Nrf2. Esophageal tissues were obtained from genetically modified mice that differed in the status of the Nrf2 gene and genes in the same pathway ( Nrf2 −/− , Keap1 −/− , K5Cre;Pkm2 fl/fl ;Keap1 −/− , and WT) and analyzed for metabolomic profiles, Nrf2 ChIP-seq, and gene expression. We found that hyperactive Nrf2 causes metabolic reprogramming and up-regulation of metabolic genes in the mouse esophagus. One of the glycolysis genes encoding pyruvate kinase M2 ( Pkm2 ) was not only differentially up-regulated, but also glycosylated and oligomerized, resulting in increased ATP biosynthesis. However, constitutive knockout of Pkm2 failed to inhibit this esophageal phenotype in vivo , and this failure may have been due to compensation by Pkm1 up-regulation. Transient inhibition of NRF2 or glycolysis inhibited the growth of human ESCC cells in which NRF2 is hyperactive in vitro . In summary, hyperactive Nrf2 causes metabolic reprogramming in the mouse esophagus through its transcriptional regulation of metabolic genes. Blocking glycolysis transiently inhibits cell proliferation and may therefore have therapeutically beneficial effects on NRF2 high ESCC in humans.

          Related collections

          Most cited references48

          • Record: found
          • Abstract: found
          • Article: not found

          NRF2 and cancer: the good, the bad and the importance of context.

          Many studies of chemopreventive drugs have suggested that their beneficial effects on suppression of carcinogenesis and many other chronic diseases are mediated through activation of the transcription factor NFE2-related factor 2 (NRF2). More recently, genetic analyses of human tumours have indicated that NRF2 may conversely be oncogenic and cause resistance to chemotherapy. It is therefore controversial whether the activation, or alternatively the inhibition, of NRF2 is a useful strategy for the prevention or treatment of cancer. This Opinion article aims to rationalize these conflicting perspectives by critiquing the context dependence of NRF2 functions and the experimental methods behind these conflicting data.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Genetic landscape of esophageal squamous cell carcinoma.

            Esophageal squamous cell carcinoma (ESCC) is one of the deadliest cancers. We performed exome sequencing on 113 tumor-normal pairs, yielding a mean of 82 non-silent mutations per tumor, and 8 cell lines. The mutational profile of ESCC closely resembles those of squamous cell carcinomas of other tissues but differs from that of esophageal adenocarcinoma. Genes involved in cell cycle and apoptosis regulation were mutated in 99% of cases by somatic alterations of TP53 (93%), CCND1 (33%), CDKN2A (20%), NFE2L2 (10%) and RB1 (9%). Histone modifier genes were frequently mutated, including KMT2D (also called MLL2; 19%), KMT2C (MLL3; 6%), KDM6A (7%), EP300 (10%) and CREBBP (6%). EP300 mutations were associated with poor survival. The Hippo and Notch pathways were dysregulated by mutations in FAT1, FAT2, FAT3 or FAT4 (27%) or AJUBA (JUB; 7%) and NOTCH1, NOTCH2 or NOTCH3 (22%) or FBXW7 (5%), respectively. These results define the mutational landscape of ESCC and highlight mutations in epigenetic modulators with prognostic and potentially therapeutic implications.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Genomic and molecular characterization of esophageal squamous cell carcinoma

              Esophageal squamous cell carcinoma (ESCC) is a world-wide prevalent cancer, which is particularly common in certain regions of Asia. Here we report the whole-exome or targeted deep sequencing of 139 paired ESCC cases, and analysis of somatic copy number variations (SCNV) of over 180 ESCCs. We identified novel significantly mutated genes such as FAT1, FAT2, ZNF750 and KMT2D, in addition to previously discovered ones (TP53, PIK3CA and NOTCH1). Further SCNV evaluation, immunohistochemistry and biological analysis suggested their functional relevance in ESCC. Notably, RTK-MAPK-PI3K pathways, cell cycle and epigenetic regulation are frequently dysregulated by multiple molecular mechanisms in this cancer. Moreover, our approaches uncovered many novel druggable candidates, and XPO1 was further explored as a therapeutic target because of its mutation and protein overexpression. Together, our integrated study unmasks a number of novel genetic lesions in ESCC and provides an important molecular foundation for understanding esophageal tumors and developing therapeutic targets.
                Bookmark

                Author and article information

                Journal
                Journal of Biological Chemistry
                J. Biol. Chem.
                American Society for Biochemistry & Molecular Biology (ASBMB)
                0021-9258
                1083-351X
                January 04 2019
                January 04 2019
                January 04 2019
                November 08 2018
                : 294
                : 1
                : 327-340
                Article
                10.1074/jbc.RA118.005963
                6322899
                30409900
                98709cf6-db5b-4f95-915f-cc0e21d62e7f
                © 2018
                History

                Comments

                Comment on this article