73
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Development of Genetic System to Inactivate a Borrelia turicatae Surface Protein Selectively Produced within the Salivary Glands of the Arthropod Vector

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Borrelia turicatae, an agent of tick-borne relapsing fever, is an example of a pathogen that can adapt to disparate conditions found when colonizing the mammalian host and arthropod vector. However, little is known about the genetic factors necessary during the tick-mammalian infectious cycle, therefore we developed a genetic system to transform this species of spirochete. We also identified a plasmid gene that was up-regulated in vitro when B. turicatae was grown in conditions mimicking the tick environment. This 40 kilodalton protein was predicted to be surface localized and designated the Borrelia repeat protein A ( brpA) due to the redundancy of the amino acid motif Gln-Gly-Asn-Val-Glu.

          Methodology/Principal Findings

          Quantitative reverse-transcriptase polymerase chain reaction using RNA from B. turicatae infected ticks and mice indicated differential regulation of brpA during the tick-mammalian infectious cycle. The surface localization was determined, and production of the protein within the salivary glands of the tick was demonstrated. We then applied a novel genetic system for B. turicatae to inactivate brpA and examined the role of the gene product for vector colonization and the ability to establish murine infection.

          Conclusions/Significance

          These results demonstrate the complexity of protein production in a population of spirochetes within the tick. Additionally, the development of a genetic system is important for future studies to evaluate the requirement of specific B. turicatae genes for vector colonization and transmission.

          Author Summary

          Relapsing fever spirochetes are a global yet neglected pathogen causing recurrent febrile episodes, nausea, vomiting, and pregnancy complications including miscarriage. Most species of tick-borne relapsing fever spirochetes are maintained in enzootic cycles, and given an approximately 20 year life span, the arthropod vector for Borrelia turicatae represents a reservoir for the pathogens. While B. turicatae has adapted mechanisms to efficiently colonize and survive within the vector, the genes necessary during the tick-mammalian infectious cycle are unknown. We have identified a gene that was designated the Borrelia repeat protein A ( brpA). brpA was up-regulated in a portion of the spirochetes colonizing Ornithodoros turicata, the vector for B. turicatae. Developing a system to delete the gene in B. turicatae enabled the evaluation of the necessity of brpA. With the genetic system established for B. turicatae, a better understanding of the genetic constituents required during the tick-mammalian infectious cycle may be obtained.

          Related collections

          Most cited references33

          • Record: found
          • Abstract: found
          • Article: not found

          Prediction of lipoprotein signal peptides in Gram-negative bacteria.

          A method to predict lipoprotein signal peptides in Gram-negative Eubacteria, LipoP, has been developed. The hidden Markov model (HMM) was able to distinguish between lipoproteins (SPaseII-cleaved proteins), SPaseI-cleaved proteins, cytoplasmic proteins, and transmembrane proteins. This predictor was able to predict 96.8% of the lipoproteins correctly with only 0.3% false positives in a set of SPaseI-cleaved, cytoplasmic, and transmembrane proteins. The results obtained were significantly better than those of previously developed methods. Even though Gram-positive lipoprotein signal peptides differ from Gram-negatives, the HMM was able to identify 92.9% of the lipoproteins included in a Gram-positive test set. A genome search was carried out for 12 Gram-negative genomes and one Gram-positive genome. The results for Escherichia coli K12 were compared with new experimental data, and the predictions by the HMM agree well with the experimentally verified lipoproteins. A neural network-based predictor was developed for comparison, and it gave very similar results. LipoP is available as a Web server at www.cbs.dtu.dk/services/LipoP/.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Isolation and cultivation of Lyme disease spirochetes.

            A Barbour (1984)
            The successful isolation and cultivation of Lyme disease spirochetes traces its lineage to early attempts at cultivating relapsing fever borreliae. Observations on the growth of Lyme disease spirochetes under different in vitro conditions may yield important clues to both the metabolic characteristics of these newly discovered organisms and the pathogenesis of Lyme disease. Images FIG. 1
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              The 20 years of PROSITE

              PROSITE consists of documentation entries describing protein domains, families and functional sites, as well as associated patterns and profiles to identify them. It is complemented by ProRule, a collection of rules based on profiles and patterns, which increases the discriminatory power of profiles and patterns by providing additional information about functionally and/or structurally critical amino acids. In this article, we describe the implementation of a new method to assign a status to pattern matches, the new PROSITE web page and a new approach to improve the specificity and sensitivity of PROSITE methods. The latest version of PROSITE (release 20.19 of 11 September 2007) contains 1319 patterns, 745 profiles and 764 ProRules. Over the past 2 years, about 200 domains have been added, and now 53% of UniProtKB/Swiss-Prot entries (release 54.2 of 11 September 2007) have a PROSITE match. PROSITE is available on the web at: http://www.expasy.org/prosite/.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Negl Trop Dis
                PLoS Negl Trop Dis
                plos
                plosntds
                PLoS Neglected Tropical Diseases
                Public Library of Science (San Francisco, USA )
                1935-2727
                1935-2735
                October 2013
                31 October 2013
                : 7
                : 10
                : e2514
                Affiliations
                [1 ]Department of Biological Sciences, Mississippi State University, Starkville, Mississippi, United States of America
                [2 ]Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, United States of America
                [3 ]Laboratory of Intracellular Parasites, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, United States of America
                [4 ]Research Technologies Branch, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, United States of America
                [5 ]Bioinformatics and Computational Biosciences Branch, Office of Cyber Infrastructure and Computational Biology, National Institute of Allergy and Infectious Diseases, National Institute of Health, Bethesda, Maryland, United States of America
                [6 ]Laboratory of Zoonotic Pathogens, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, United States of America
                University of California, Davis, United States of America
                Author notes

                The authors have declared that no competing interests exist.

                Conceived and designed the experiments: JEL TGS. Performed the experiments: JEL HKW RH PAB DES VN SJR. Analyzed the data: JEL KEP CPB TGS. Contributed reagents/materials/analysis tools: JEL TGS. Wrote the paper: JEL.

                Article
                PNTD-D-13-01188
                10.1371/journal.pntd.0002514
                3814808
                24205425
                9871286a-c9f2-4e41-a1e6-1439457b530c
                Copyright @ 2013

                This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.

                History
                : 8 August 2013
                : 19 September 2013
                Page count
                Pages: 11
                Funding
                This research was supported by an 1 K22AI091652-01A1. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article

                Infectious disease & Microbiology
                Infectious disease & Microbiology

                Comments

                Comment on this article