5
views
0
recommends
+1 Recommend
2 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Coronary and cerebral thrombosis in a young patient after mild COVID-19 illness: a case report

      case-report

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          COVID-19 has spread worldwide and has caused significant morbidity and mortality. Myocardial injury and thrombo-embolism are known complications for those with severe forms of disease. The incidence and risk factors for these complications for those patients who are asymptomatic or with mild forms of COVID-19 is unknown.

          Case summary

          In this report we describe the case of a 35-year-old man with no past cardiac history who presented with chest pain and a high-sensitivity troponin level of 386 ng/L in the context of an unspecified mild viral illness 1 month previously. Diagnostic evaluation revealed a new cardiomyopathy, left ventricular thrombus, and mid right coronary artery thrombosis. The coronary thrombosis was treated with thrombectomy. SARS-CoV-2 antibodies returned positive. He initially did well post-procedure; however, prior to discharge, he developed a second arterial thrombo-embolism event, a middle cerebral artery stroke. He was treated with thrombectomy and remains hospitalized.

          Discussion

          Recognition that mild COVID-19 can be complicated by subsequent cardiac injury and/or coagulopathy is important. As more people recover from this viral illness and return to normal activity levels, discussion among cardiac experts has begun regarding screening for occult myocardial injury in those who plan to resume competitive athletic activity. This case highlights the need for investigation regarding (i) the duration of thrombophilia after recovery from illness; (ii) the population that should receive thromboprophylaxis; and (iii) the duration of thromboprophylaxis therapy for COVID-19.

          Related collections

          Most cited references8

          • Record: found
          • Abstract: found
          • Article: not found

          An interactive web-based dashboard to track COVID-19 in real time

          In December, 2019, a local outbreak of pneumonia of initially unknown cause was detected in Wuhan (Hubei, China), and was quickly determined to be caused by a novel coronavirus, 1 namely severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The outbreak has since spread to every province of mainland China as well as 27 other countries and regions, with more than 70 000 confirmed cases as of Feb 17, 2020. 2 In response to this ongoing public health emergency, we developed an online interactive dashboard, hosted by the Center for Systems Science and Engineering (CSSE) at Johns Hopkins University, Baltimore, MD, USA, to visualise and track reported cases of coronavirus disease 2019 (COVID-19) in real time. The dashboard, first shared publicly on Jan 22, illustrates the location and number of confirmed COVID-19 cases, deaths, and recoveries for all affected countries. It was developed to provide researchers, public health authorities, and the general public with a user-friendly tool to track the outbreak as it unfolds. All data collected and displayed are made freely available, initially through Google Sheets and now through a GitHub repository, along with the feature layers of the dashboard, which are now included in the Esri Living Atlas. The dashboard reports cases at the province level in China; at the city level in the USA, Australia, and Canada; and at the country level otherwise. During Jan 22–31, all data collection and processing were done manually, and updates were typically done twice a day, morning and night (US Eastern Time). As the outbreak evolved, the manual reporting process became unsustainable; therefore, on Feb 1, we adopted a semi-automated living data stream strategy. Our primary data source is DXY, an online platform run by members of the Chinese medical community, which aggregates local media and government reports to provide cumulative totals of COVID-19 cases in near real time at the province level in China and at the country level otherwise. Every 15 min, the cumulative case counts are updated from DXY for all provinces in China and for other affected countries and regions. For countries and regions outside mainland China (including Hong Kong, Macau, and Taiwan), we found DXY cumulative case counts to frequently lag behind other sources; we therefore manually update these case numbers throughout the day when new cases are identified. To identify new cases, we monitor various Twitter feeds, online news services, and direct communication sent through the dashboard. Before manually updating the dashboard, we confirm the case numbers with regional and local health departments, including the respective centres for disease control and prevention (CDC) of China, Taiwan, and Europe, the Hong Kong Department of Health, the Macau Government, and WHO, as well as city-level and state-level health authorities. For city-level case reports in the USA, Australia, and Canada, which we began reporting on Feb 1, we rely on the US CDC, the government of Canada, the Australian Government Department of Health, and various state or territory health authorities. All manual updates (for countries and regions outside mainland China) are coordinated by a team at Johns Hopkins University. The case data reported on the dashboard aligns with the daily Chinese CDC 3 and WHO situation reports 2 for within and outside of mainland China, respectively (figure ). Furthermore, the dashboard is particularly effective at capturing the timing of the first reported case of COVID-19 in new countries or regions (appendix). With the exception of Australia, Hong Kong, and Italy, the CSSE at Johns Hopkins University has reported newly infected countries ahead of WHO, with Hong Kong and Italy reported within hours of the corresponding WHO situation report. Figure Comparison of COVID-19 case reporting from different sources Daily cumulative case numbers (starting Jan 22, 2020) reported by the Johns Hopkins University Center for Systems Science and Engineering (CSSE), WHO situation reports, and the Chinese Center for Disease Control and Prevention (Chinese CDC) for within (A) and outside (B) mainland China. Given the popularity and impact of the dashboard to date, we plan to continue hosting and managing the tool throughout the entirety of the COVID-19 outbreak and to build out its capabilities to establish a standing tool to monitor and report on future outbreaks. We believe our efforts are crucial to help inform modelling efforts and control measures during the earliest stages of the outbreak.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Endothelial cell infection and endotheliitis in COVID-19

            Cardiovascular complications are rapidly emerging as a key threat in coronavirus disease 2019 (COVID-19) in addition to respiratory disease. The mechanisms underlying the disproportionate effect of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection on patients with cardiovascular comorbidities, however, remain incompletely understood.1, 2 SARS-CoV-2 infects the host using the angiotensin converting enzyme 2 (ACE2) receptor, which is expressed in several organs, including the lung, heart, kidney, and intestine. ACE2 receptors are also expressed by endothelial cells. 3 Whether vascular derangements in COVID-19 are due to endothelial cell involvement by the virus is currently unknown. Intriguingly, SARS-CoV-2 can directly infect engineered human blood vessel organoids in vitro. 4 Here we demonstrate endothelial cell involvement across vascular beds of different organs in a series of patients with COVID-19 (further case details are provided in the appendix). Patient 1 was a male renal transplant recipient, aged 71 years, with coronary artery disease and arterial hypertension. The patient's condition deteriorated following COVID-19 diagnosis, and he required mechanical ventilation. Multisystem organ failure occurred, and the patient died on day 8. Post-mortem analysis of the transplanted kidney by electron microscopy revealed viral inclusion structures in endothelial cells (figure A, B ). In histological analyses, we found an accumulation of inflammatory cells associated with endothelium, as well as apoptotic bodies, in the heart, the small bowel (figure C) and lung (figure D). An accumulation of mononuclear cells was found in the lung, and most small lung vessels appeared congested. Figure Pathology of endothelial cell dysfunction in COVID-19 (A, B) Electron microscopy of kidney tissue shows viral inclusion bodies in a peritubular space and viral particles in endothelial cells of the glomerular capillary loops. Aggregates of viral particles (arrow) appear with dense circular surface and lucid centre. The asterisk in panel B marks peritubular space consistent with capillary containing viral particles. The inset in panel B shows the glomerular basement membrane with endothelial cell and a viral particle (arrow; about 150 nm in diameter). (C) Small bowel resection specimen of patient 3, stained with haematoxylin and eosin. Arrows point to dominant mononuclear cell infiltrates within the intima along the lumen of many vessels. The inset of panel C shows an immunohistochemical staining of caspase 3 in small bowel specimens from serial section of tissue described in panel D. Staining patterns were consistent with apoptosis of endothelial cells and mononuclear cells observed in the haematoxylin-eosin-stained sections, indicating that apoptosis is induced in a substantial proportion of these cells. (D) Post-mortem lung specimen stained with haematoxylin and eosin showed thickened lung septa, including a large arterial vessel with mononuclear and neutrophilic infiltration (arrow in upper inset). The lower inset shows an immunohistochemical staining of caspase 3 on the same lung specimen; these staining patterns were consistent with apoptosis of endothelial cells and mononuclear cells observed in the haematoxylin-eosin-stained sections. COVID-19=coronavirus disease 2019. Patient 2 was a woman, aged 58 years, with diabetes, arterial hypertension, and obesity. She developed progressive respiratory failure due to COVID-19 and subsequently developed multi-organ failure and needed renal replacement therapy. On day 16, mesenteric ischaemia prompted removal of necrotic small intestine. Circulatory failure occurred in the setting of right heart failure consequent to an ST-segment elevation myocardial infarction, and cardiac arrest resulted in death. Post-mortem histology revealed lymphocytic endotheliitis in lung, heart, kidney, and liver as well as liver cell necrosis. We found histological evidence of myocardial infarction but no sign of lymphocytic myocarditis. Histology of the small intestine showed endotheliitis (endothelialitis) of the submucosal vessels. Patient 3 was a man, aged 69 years, with hypertension who developed respiratory failure as a result of COVID-19 and required mechanical ventilation. Echocardiography showed reduced left ventricular ejection fraction. Circulatory collapse ensued with mesenteric ischaemia, and small intestine resection was performed, but the patient survived. Histology of the small intestine resection revealed prominent endotheliitis of the submucosal vessels and apoptotic bodies (figure C). We found evidence of direct viral infection of the endothelial cell and diffuse endothelial inflammation. Although the virus uses ACE2 receptor expressed by pneumocytes in the epithelial alveolar lining to infect the host, thereby causing lung injury, the ACE2 receptor is also widely expressed on endothelial cells, which traverse multiple organs. 3 Recruitment of immune cells, either by direct viral infection of the endothelium or immune-mediated, can result in widespread endothelial dysfunction associated with apoptosis (figure D). The vascular endothelium is an active paracrine, endocrine, and autocrine organ that is indispensable for the regulation of vascular tone and the maintenance of vascular homoeostasis. 5 Endothelial dysfunction is a principal determinant of microvascular dysfunction by shifting the vascular equilibrium towards more vasoconstriction with subsequent organ ischaemia, inflammation with associated tissue oedema, and a pro-coagulant state. 6 Our findings show the presence of viral elements within endothelial cells and an accumulation of inflammatory cells, with evidence of endothelial and inflammatory cell death. These findings suggest that SARS-CoV-2 infection facilitates the induction of endotheliitis in several organs as a direct consequence of viral involvement (as noted with presence of viral bodies) and of the host inflammatory response. In addition, induction of apoptosis and pyroptosis might have an important role in endothelial cell injury in patients with COVID-19. COVID-19-endotheliitis could explain the systemic impaired microcirculatory function in different vascular beds and their clinical sequelae in patients with COVID-19. This hypothesis provides a rationale for therapies to stabilise the endothelium while tackling viral replication, particularly with anti-inflammatory anti-cytokine drugs, ACE inhibitors, and statins.7, 8, 9, 10, 11 This strategy could be particularly relevant for vulnerable patients with pre-existing endothelial dysfunction, which is associated with male sex, smoking, hypertension, diabetes, obesity, and established cardiovascular disease, all of which are associated with adverse outcomes in COVID-19.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Incidence of thrombotic complications in critically ill ICU patients with COVID-19

              Introduction COVID-19 may predispose to both venous and arterial thromboembolism due to excessive inflammation, hypoxia, immobilisation and diffuse intravascular coagulation. Reports on the incidence of thrombotic complications are however not available. Methods We evaluated the incidence of the composite outcome of symptomatic acute pulmonary embolism (PE), deep-vein thrombosis, ischemic stroke, myocardial infarction or systemic arterial embolism in all COVID-19 patients admitted to the ICU of 2 Dutch university hospitals and 1 Dutch teaching hospital. Results We studied 184 ICU patients with proven COVID-19 pneumonia of whom 23 died (13%), 22 were discharged alive (12%) and 139 (76%) were still on the ICU on April 5th 2020. All patients received at least standard doses thromboprophylaxis. The cumulative incidence of the composite outcome was 31% (95%CI 20-41), of which CTPA and/or ultrasonography confirmed VTE in 27% (95%CI 17-37%) and arterial thrombotic events in 3.7% (95%CI 0-8.2%). PE was the most frequent thrombotic complication (n = 25, 81%). Age (adjusted hazard ratio (aHR) 1.05/per year, 95%CI 1.004-1.01) and coagulopathy, defined as spontaneous prolongation of the prothrombin time > 3 s or activated partial thromboplastin time > 5 s (aHR 4.1, 95%CI 1.9-9.1), were independent predictors of thrombotic complications. Conclusion The 31% incidence of thrombotic complications in ICU patients with COVID-19 infections is remarkably high. Our findings reinforce the recommendation to strictly apply pharmacological thrombosis prophylaxis in all COVID-19 patients admitted to the ICU, and are strongly suggestive of increasing the prophylaxis towards high-prophylactic doses, even in the absence of randomized evidence.
                Bookmark

                Author and article information

                Contributors
                Role: Handling Editor
                Role: Editor
                Role: Editor
                Role: Editor
                Role: Editor
                Journal
                Eur Heart J Case Rep
                Eur Heart J Case Rep
                ehjcr
                European Heart Journal: Case Reports
                Oxford University Press
                2514-2119
                01 October 2020
                : ytaa270
                Affiliations
                [y1 ] Department of Medicine, Division of Cardiology, Columbia University Irving Medical Center/NewYork-Presbyterian Hospital , New York, NY, USA
                [y2 ] Clinical Trials Center, Cardiovascular Research Foundation , New York, NY, USA
                Author notes
                Corresponding author. Email: am4052@ 123456cumc.columbia.edu
                Author information
                http://orcid.org/0000-0002-2305-156X
                http://orcid.org/0000-0002-0774-9458
                http://orcid.org/0000-0003-0061-1058
                Article
                ytaa270
                10.1093/ehjcr/ytaa270
                7543370
                9879dfa7-663e-41f2-ba5a-3960b78642f0
                © The Author(s) 2020. Published by Oxford University Press on behalf of the European Society of Cardiology.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 09 June 2020
                : 17 June 2020
                : 16 July 2020
                Page count
                Pages: 5
                Categories
                Case Report
                AcademicSubjects/MED00200
                Custom metadata
                PAP

                acute coronary syndrome,thrombo-embolism,covid-19,case report

                Comments

                Comment on this article