81
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Idiopathic pulmonary fibrosis: an epithelial/fibroblastic cross-talk disorder

      review-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Idiopathic pulmonary fibrosis is a chronic and usually progressive lung disorder of unknown etiology. A growing body of evidence suggests that, in contrast to other interstitial lung diseases, IPF is a distinct entity in which inflammation is a secondary and non-relevant pathogenic partner. Evidence includes the presence of similar mild/moderate inflammation either in early or late disease, and the lack of response to potent anti-inflammatory therapy. Additionally, it is clear from experimental models and some human diseases that it is possible to have fibrosis without inflammation. An evolving hypothesis proposes that IPF may result from epithelial micro-injuries and abnormal wound healing.

          Related collections

          Most cited references45

          • Record: found
          • Abstract: found
          • Article: not found

          Idiopathic pulmonary fibrosis: prevailing and evolving hypotheses about its pathogenesis and implications for therapy.

          Idiopathic pulmonary fibrosis is a progressive and usually fatal lung disease characterized by fibroblast proliferation and extracellular matrix remodeling, which result in irreversible distortion of the lung's architecture. Although the pathogenetic mechanisms remain to be determined, the prevailing hypothesis holds that fibrosis is preceded and provoked by a chronic inflammatory process that injures the lung and modulates lung fibrogenesis, leading to the end-stage fibrotic scar. However, there is little evidence that inflammation is prominent in early disease, and it is unclear whether inflammation is relevant to the development of the fibrotic process. Evidence suggests that inflammation does not play a pivotal role. Inflammation is not a prominent histopathologic finding, and epithelial injury in the absence of ongoing inflammation is sufficient to stimulate the development of fibrosis. In addition, the inflammatory response to a lung fibrogenic insult is not necessarily related to the fibrotic response. Clinical measurements of inflammation fail to correlate with stage or outcome, and potent anti-inflammatory therapy does not improve outcome. This review presents a growing body of evidence suggesting that idiopathic pulmonary fibrosis involves abnormal wound healing in response to multiple, microscopic sites of ongoing alveolar epithelial injury and activation associated with the formation of patchy fibroblast-myofibroblast foci, which evolve to fibrosis. Progress in understanding the fibrogenic mechanisms in the lung is likely to yield more effective therapies.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Prognostic significance of histopathologic subsets in idiopathic pulmonary fibrosis.

            Idiopathic pulmonary fibrosis (IPF) is a generally fatal disorder with a reported median survival of 3 to 6 yr. This has been based on relatively few studies with diagnoses inconsistently confirmed by adequate lung biopsy. Retrospective analysis of 104 patients with IPF who had open lung biopsy (OLB) at Mayo Medical Center from 1976 to 1985 was performed to establish the overall survival rate, the spectrum of histopathological subgroups and their associated prognostic significance. The study group consisted of 54 men and 50 women with a median age of 63 yr. Median survival was 3.8 yr after diagnosis by OLB with an estimated 10 yr survival of 27%. Current histopathologic review showed a heterogeneous group including usual interstitial pneumonia (UIP), desquamative interstitial pneumonia (DIP), nonspecific interstitial pneumonia/fibrosis (NSIP), acute interstitial pneumonia (AIP), bronchiolitis, bronchiolitis obliterans organizing pneumonia (BOOP), and others. Median survival of the UIP group was 2.8 yr which is significantly worse (p < 0.001) than for other subgroups of chronic interstitial pneumonias. IPF includes several histopathologic subgroups with significantly different survival rates. Patients with UIP have worse survival than patients with other types of idiopathic chronic interstitial pneumonias including NSIP. Accurate histopathologic classification is essential for prognostication in patients with IPF.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Fibroblasts from idiopathic pulmonary fibrosis and normal lungs differ in growth rate, apoptosis, and tissue inhibitor of metalloproteinases expression.

              Idiopathic pulmonary fibrosis (IPF) is a chronic lung disorder characterized by fibroblast proliferation and extracellular matrix accumulation. However, studies on fibroblast growth rate and collagen synthesis have given contradictory results. Here we analyzed fibroblast growth rate by a formazan-based chromogenic assay; fibroblast apoptosis by in situ end labeling (ISEL) and propidium iodide staining; percent of alpha-smooth muscle actin (alpha-SMA) positive cells by fluorescence-activated cell sorter; and alpha1-(I) collagen, transforming growth factor (TGF)-beta1, collagenase-1, gelatinases A and B, and tissue inhibitor of metalloproteinase (TIMP)-1, -2, -3, and -4 expression by reverse transcriptase/polymerase chain reaction in fibroblasts derived from IPF and control lungs. Growth rate was significantly lower in IPF fibroblasts compared with controls (13.3 +/- 38.5% versus 294.6 +/- 57%, P < 0.0001 at 13 d). Conversely, a significantly higher percentage of apoptotic cells was observed in IPF-derived fibroblasts (ISEL: 31.9 +/- 7.0% versus 15.5 +/- 7.6% from controls; P < 0.008). alpha-SMA analysis revealed a significantly higher percentage of myofibroblasts in IPF samples (62.8 +/- 25.2% versus 14.8 +/- 11.7% from controls; P < 0.01). IPF fibroblasts were characterized by an increase in pro-alpha1-(I) collagen, TGF-beta1, gelatinase B, and all TIMPs' gene expression, whereas collagenase-1 and gelatinase A expression showed no differences. These results suggest that fibroblasts from IPF exhibit a profibrotic secretory phenotype, with lower growth rate and increased spontaneous apoptosis.
                Bookmark

                Author and article information

                Journal
                Respir Res
                Respiratory Research
                BioMed Central
                1465-9921
                1465-993X
                2002
                11 October 2001
                : 3
                : 1
                : 3
                Affiliations
                [1 ]Instituto Nacional de Enfermedades Respiratorias & Facultad de Ciencias, UNAM, México DF, México
                Article
                rr175
                10.1186/rr175
                64814
                11806838
                988125a1-a65c-4892-bbeb-6e7556f0ef12
                Copyright © 2001 BioMed Central Ltd
                History
                : 26 July 2001
                : 17 August 2001
                : 20 August 2001
                : 21 August 2001
                Categories
                Review

                Respiratory medicine
                apoptosis,pulmonary fibrosis,epithelial cells,myofibroblasts,extracellular matrix

                Comments

                Comment on this article