18
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      THE TOXIC CYANOBACTERIUM NOSTOC SP. STRAIN 152 PRODUCES HIGHEST AMOUNTS OF MICROCYSTIN AND NOSTOPHYCIN UNDER STRESS CONDITIONS.

      Journal of phycology

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The understanding of how environmental factors regulate toxic secondary metabolite production in cyanobacteria is important to guarantee water quality. Very little is known on the regulation of toxic secondary metabolite production in benthic cyanobacteria. In this study the physiological regulation of the production of the toxic heptapeptide microcystin (MC) and the non-toxic related peptide nostophycin (NP) in the benthic cyanobacterium Nostoc sp. strain 152 was studied under contrasting environmental conditions. I used a 2(k) levels factorial design, where k is the number of four factors that have been tested: Reduction in temperature (20 vs. 12°C), irradiance (50 vs. 1 μmol · m(-2) · s(-1)), P-PO(4) (144 vs. 0.14 μM P-PO(4)), N-NO(3) (5.88 mM vs. N-NO(3) free). While the growth rate was reduced more than hundred fold under most severe conditions of temperature, irradiance, and phosphate reduction the production of MC and NP never ceased. The MC and NP contents per cell varied at maximum 5- and 10.6-fold each, however the physiological variation did not outweigh the highly significant linear relationship between the daily cell division rate and the MC and NP net production rates. Surprisingly the MC and NP contents per cell showed a maximum under P-PO(4) reduced and irradiance reduced conditions. Both intra- and extracellular MC and NP concentrations were negatively related to P-PO(4) and irradiance. It is concluded that the proximate factor behind maximal cellular MC and NP contents is physiological stress.

          Related collections

          Author and article information

          Journal
          22723716
          3378210
          10.1111/j.1529-8817.2010.00931.x

          Comments

          Comment on this article