4
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Vespa velutina: An Alien Driver of Honey Bee Colony Losses

      , , , ,
      Diversity
      MDPI AG

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Vespa velutina, or Asian yellow-legged hornet, was accidentally introduced from China to other parts of the world: South Korea in 2003, Europe in 2004, and Japan in 2012. V. velutina represents a serious threat to native pollinators. It is known to be a fierce predator of honey bees, but can also hunt wild bees, native wasps, and other flying insects. When V. velutina colonies are developed, many hornets capture foraging bees which are coming back to their hives, causing an increase in homing failure and paralysis of foraging thus leading to colony collapse. The hornets may enter weak beehives to prey on brood and pillage honey. Unlike Apis cerana, Apis mellifera is unable to cope with the predation pressure of V. velutina. Monitoring the spread of an invasive alien species is crucial to plan appropriate management actions and activities to limit the expansion of the species. In addition, an early detection of V. velutina in areas far away from the expansion front allows a rapid response aimed to remove these isolated populations before the settlement of the species. Where V. velutina is now established, control measures to prevent colony losses must be implemented with an integrated pest management approach.

          Related collections

          Most cited references70

          • Record: found
          • Abstract: not found
          • Article: not found

          Direct and indirect effects of alien insect herbivores on ecological processes and interactions in forests of eastern North America

            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Ecological effects and management of invasive alien Vespidae

              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Can species distribution models really predict the expansion of invasive species?

              Predictive studies are of paramount importance for biological invasions, one of the biggest threats for biodiversity. To help and better prioritize management strategies, species distribution models (SDMs) are often used to predict the potential invasive range of introduced species. Yet, SDMs have been regularly criticized, due to several strong limitations, such as violating the equilibrium assumption during the invasion process. Unfortunately, validation studies–with independent data–are too scarce to assess the predictive accuracy of SDMs in invasion biology. Yet, biological invasions allow to test SDMs usefulness, by retrospectively assessing whether they would have accurately predicted the latest ranges of invasion. Here, we assess the predictive accuracy of SDMs in predicting the expansion of invasive species. We used temporal occurrence data for the Asian hornet Vespa velutina nigrithorax, a species native to China that is invading Europe with a very fast rate. Specifically, we compared occurrence data from the last stage of invasion (independent validation points) to the climate suitability distribution predicted from models calibrated with data from the early stage of invasion. Despite the invasive species not being at equilibrium yet, the predicted climate suitability of validation points was high. SDMs can thus adequately predict the spread of V. v. nigrithorax, which appears to be—at least partially–climatically driven. In the case of V. v. nigrithorax, SDMs predictive accuracy was slightly but significantly better when models were calibrated with invasive data only, excluding native data. Although more validation studies for other invasion cases are needed to generalize our results, our findings are an important step towards validating the use of SDMs in invasion biology.
                Bookmark

                Author and article information

                Contributors
                Journal
                DIVEC6
                Diversity
                Diversity
                MDPI AG
                1424-2818
                January 2020
                December 20 2019
                : 12
                : 1
                : 5
                Article
                10.3390/d12010005
                9894d027-78e4-4dbb-9dee-ae3eed0a93ca
                © 2019

                https://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article