1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      scClustViz – Single-cell RNAseq cluster assessment and visualization

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Single-cell RNA sequencing (scRNAseq) represents a new kind of microscope that can measure the transcriptome profiles of thousands of individual cells from complex cellular mixtures, such as in a tissue, in a single experiment. This technology is particularly valuable for characterization of tissue heterogeneity because it can be used to identify and classify all cell types in a tissue. This is generally done by clustering the data, based on the assumption that cells of a particular type share similar transcriptomes, distinct from other cell types in the tissue. However, nearly all clustering algorithms have tunable parameters which affect the number of clusters they will identify in data.

          The R Shiny software tool described here, scClustViz, provides a simple interactive graphical user interface for exploring scRNAseq data and assessing the biological relevance of clustering results. Given that cell types are expected to have distinct gene expression patterns, scClustViz uses differential gene expression between clusters as a metric for assessing the fit of a clustering result to the data at multiple cluster resolution levels. This helps select a clustering parameter for further analysis. scClustViz also provides interactive visualisation of: cluster-specific distributions of technical factors, such as predicted cell cycle stage and other metadata; cluster-wise gene expression statistics to simplify annotation of cell types and identification of cell type specific marker genes; and gene expression distributions over all cells and cell types.

          scClustViz provides an interactive interface for visualisation, assessment, and biological interpretation of cell-type classifications in scRNAseq experiments that can be easily added to existing analysis pipelines, enabling customization by bioinformaticians while enabling biologists to explore their results without the need for computational expertise. It is available at https://baderlab.github.io/scClustViz/.

          Related collections

          Most cited references50

          • Record: found
          • Abstract: not found
          • Article: not found

          Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing

            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2

            In comparative high-throughput sequencing assays, a fundamental task is the analysis of count data, such as read counts per gene in RNA-seq, for evidence of systematic changes across experimental conditions. Small replicate numbers, discreteness, large dynamic range and the presence of outliers require a suitable statistical approach. We present DESeq2, a method for differential analysis of count data, using shrinkage estimation for dispersions and fold changes to improve stability and interpretability of estimates. This enables a more quantitative analysis focused on the strength rather than the mere presence of differential expression. The DESeq2 package is available at http://www.bioconductor.org/packages/release/bioc/html/DESeq2.html. Electronic supplementary material The online version of this article (doi:10.1186/s13059-014-0550-8) contains supplementary material, which is available to authorized users.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              limma powers differential expression analyses for RNA-sequencing and microarray studies

              limma is an R/Bioconductor software package that provides an integrated solution for analysing data from gene expression experiments. It contains rich features for handling complex experimental designs and for information borrowing to overcome the problem of small sample sizes. Over the past decade, limma has been a popular choice for gene discovery through differential expression analyses of microarray and high-throughput PCR data. The package contains particularly strong facilities for reading, normalizing and exploring such data. Recently, the capabilities of limma have been significantly expanded in two important directions. First, the package can now perform both differential expression and differential splicing analyses of RNA sequencing (RNA-seq) data. All the downstream analysis tools previously restricted to microarray data are now available for RNA-seq as well. These capabilities allow users to analyse both RNA-seq and microarray data with very similar pipelines. Second, the package is now able to go past the traditional gene-wise expression analyses in a variety of ways, analysing expression profiles in terms of co-regulated sets of genes or in terms of higher-order expression signatures. This provides enhanced possibilities for biological interpretation of gene expression differences. This article reviews the philosophy and design of the limma package, summarizing both new and historical features, with an emphasis on recent enhancements and features that have not been previously described.
                Bookmark

                Author and article information

                Contributors
                Role: ConceptualizationRole: Data CurationRole: Formal AnalysisRole: InvestigationRole: SoftwareRole: VisualizationRole: Writing – Original Draft Preparation
                Role: ConceptualizationRole: Funding AcquisitionRole: Project AdministrationRole: ResourcesRole: SupervisionRole: Writing – Review & Editing
                Journal
                F1000Res
                F1000Res
                F1000Research
                F1000Research
                F1000 Research Limited (London, UK )
                2046-1402
                12 March 2019
                2018
                : 7
                : ISCB Comm J-1522
                Affiliations
                [1 ]Molecular Genetics, University of Toronto, Toronto, Ontario, M5S3E1, Canada
                [2 ]The Donnelly Centre, University of Toronto, Toronto, Ontario, M5S3E1, Canada
                [1 ]Constellation Pharmaceuticals, Cambridge, MA, USA
                [1 ]Wellcome Genome Campus, Wellcome Sanger Institute, Hinxton, UK
                [2 ]Wellcome Sanger Institute, Hinxton, UK
                [1 ]Constellation Pharmaceuticals, Cambridge, MA, USA
                University of Toronto
                [1 ]Wellcome Genome Campus, Wellcome Sanger Institute, Hinxton, UK
                [2 ]Wellcome Sanger Institute, Hinxton, UK
                University of Toronto
                Author notes

                No competing interests were disclosed.

                Competing interests: No competing interests were disclosed.

                Competing interests: No competing interests were disclosed.

                Competing interests: No competing interests were disclosed.

                Competing interests: No competing interests were disclosed.

                Competing interests: No competing interests were disclosed.

                Competing interests: No competing interests were disclosed.

                Author information
                https://orcid.org/0000-0003-2496-3154
                https://orcid.org/0000-0003-0185-8861
                Article
                10.12688/f1000research.16198.2
                6456841
                31016009
                98b4eb60-6154-4e4a-a625-900c3bc0fa55
                Copyright: © 2019 Innes BT and Bader GD

                This is an open access article distributed under the terms of the Creative Commons Attribution Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 6 March 2019
                Funding
                Funded by: Canada First Research Excellence Fund
                Award ID: MedicinebyDesign
                This research was undertaken thanks in part to funding provided to the University of Toronto Medicine by Design initiative, by the Canada First Research Excellence Fund.
                The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Software Tool Article
                Articles

                single-cell rnaseq,differential expression,functional analysis,interactive visualization,r shiny,data sharing

                Comments

                Comment on this article