4
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Effects of different rotation cropping systems on potato yield, rhizosphere microbial community and soil biochemical properties

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Continuous potato cropping systems cause yield reduction, soil-borne disease aggravation, and soil degradation, but crop rotation can alleviate these negative effects. However, there are limited studies on the relationships between microbial community and other soil biochemical properties of continuous potato cropping at both pre-planting and harvest in North China. A 4-year study was conducted to explore the effects of different rotation system on soil biochemical properties, microbial community at pre-planting and harvest, and potato yield, tuber number and black scurf incidence at harvest in 2020 and 2021, which included 4 treatments vis. potato-potato-potato-potato (PC), potato-oat-faba bean-potato (PR), oat-faba bean-potato-oat (O), and faba bean-potato-oat-faba bean (B). The results showed that soil biochemical properties and microbial community among all treatments showed no significant difference at pre-planting after a long cold winter generally. At harvest, PC reduced tuber yield and number and significantly increased black scurf incidence relative to potato rotation systems. PC also reduced soil enzyme activities, the content of soil nutrients, and fungal community diversity, and increased bacterial community diversity compared with the other treatments, insignificantly when compared with PR. Relative abundance of microorganisms related to the degradation of organic residues, soil nitrogen cycling, and disease suppression, such as the genera Devosia, Aeromicrobium, Paraphoma, and Papiliotrema, were significantly higher in O or B than in PC and PR, while microorganisms related to disease infection such as the genera Pseudomonas, Colletotrichum, Plectosphaerella, Fusarium, and Verticillium exhibited increased in PC and PR. Principal Coordinates Analysis (PCoA) showed that there were significant differences in the microbial community structure of PC and PR at harvest compared with that of O and B. Redundancy analysis (RDA) revealed that soil available potassium (AK), acid phosphatase (ACP), available phosphorus (AP), sucrase (SUC) and pH were the dominant factors that significantly affected bacterial and fungal community structure. Partial least squares structural equation model indicated rotation system had significant negative effect on fungal community. It was concluded that growing oat or faba bean after potato can increase soil beneficial microorganisms and maintain the ecosystem healthy, thus reducing the incidence of tuber black scurf and increasing potato yield.

          Related collections

          Most cited references57

          • Record: found
          • Abstract: found
          • Article: not found

          The microbial nitrogen-cycling network

          Nitrogen is an essential component of all living organisms and the main nutrient limiting life on our planet. By far, the largest inventory of freely accessible nitrogen is atmospheric dinitrogen, but most organisms rely on more bioavailable forms of nitrogen, such as ammonium and nitrate, for growth. The availability of these substrates depends on diverse nitrogen-transforming reactions that are carried out by complex networks of metabolically versatile microorganisms. In this Review, we summarize our current understanding of the microbial nitrogen-cycling network, including novel processes, their underlying biochemical pathways, the involved microorganisms, their environmental importance and industrial applications.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Living in a fungal world: impact of fungi on soil bacterial niche development.

            The colonization of land by plants appears to have coincided with the appearance of mycorrhiza-like fungi. Over evolutionary time, fungi have maintained their prominent role in the formation of mycorrhizal associations. In addition, however, they have been able to occupy other terrestrial niches of which the decomposition of recalcitrant organic matter is perhaps the most remarkable. This implies that, in contrast to that of aquatic organic matter decomposition, bacteria have not been able to monopolize decomposition processes in terrestrial ecosystems. The emergence of fungi in terrestrial ecosystems must have had a strong impact on the evolution of terrestrial bacteria. On the one hand, potential decomposition niches, e.g. lignin degradation, have been lost for bacteria, whereas on the other hand the presence of fungi has itself created new bacterial niches. Confrontation between bacteria and fungi is ongoing, and from studying contemporary interactions, we can learn about the impact that fungi presently have, and have had in the past, on the ecology and evolution of terrestrial bacteria. In the first part of this review, the focus is on niche differentiation between soil bacteria and fungi involved in the decomposition of plant-derived organic matter. Bacteria and fungi are seen to compete for simple plant-derived substrates and have developed antagonistic strategies. For more recalcitrant organic substrates, e.g. cellulose and lignin, both competitive and mutualistic strategies appear to have evolved. In the second part of the review, bacterial niches with respect to the utilization of fungal-derived substrates are considered. Here, several lines of development can be recognized, ranging from mutualistic exudate-consuming bacteria that are associated with fungal surfaces to endosymbiotic and mycophagous bacteria. In some cases, there are indications of fungal specific selection in fungus-associated bacteria, and possible mechanisms for such selection are discussed.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The rhizosphere microbiome: significance of plant beneficial, plant pathogenic, and human pathogenic microorganisms.

              Microbial communities play a pivotal role in the functioning of plants by influencing their physiology and development. While many members of the rhizosphere microbiome are beneficial to plant growth, also plant pathogenic microorganisms colonize the rhizosphere striving to break through the protective microbial shield and to overcome the innate plant defense mechanisms in order to cause disease. A third group of microorganisms that can be found in the rhizosphere are the true and opportunistic human pathogenic bacteria, which can be carried on or in plant tissue and may cause disease when introduced into debilitated humans. Although the importance of the rhizosphere microbiome for plant growth has been widely recognized, for the vast majority of rhizosphere microorganisms no knowledge exists. To enhance plant growth and health, it is essential to know which microorganism is present in the rhizosphere microbiome and what they are doing. Here, we review the main functions of rhizosphere microorganisms and how they impact on health and disease. We discuss the mechanisms involved in the multitrophic interactions and chemical dialogues that occur in the rhizosphere. Finally, we highlight several strategies to redirect or reshape the rhizosphere microbiome in favor of microorganisms that are beneficial to plant growth and health. © 2013 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Plant Sci
                Front Plant Sci
                Front. Plant Sci.
                Frontiers in Plant Science
                Frontiers Media S.A.
                1664-462X
                29 September 2022
                2022
                : 13
                : 999730
                Affiliations
                [1] Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic Improvement of Tuber and Root Crop, Ministry of Agriculture and Rural Affairs , Beijing, China
                Author notes

                Edited by: Botao Song, Huazhong Agricultural University, China

                Reviewed by: Xu Cheng, Agricultural Genomics Institute at Shenzhen (CAAS), China; Jiasui Zhan, Swedish University of Agricultural Sciences, Sweden

                *Correspondence: Liping Jin, jinliping@ 123456caas.cn ; Guangcun Li, liguangcun@ 123456caas.cn

                This article was submitted to Crop and Product Physiology, a section of the journal Frontiers in Plant Science

                Article
                10.3389/fpls.2022.999730
                9559605
                36247636
                98c19dd9-0487-48b0-8302-e9865087e491
                Copyright © 2022 Qin, Bian, Duan, Wang, Li and Jin

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 11 August 2022
                : 13 September 2022
                Page count
                Figures: 7, Tables: 4, Equations: 0, References: 58, Pages: 14, Words: 6870
                Funding
                Funded by: Ministry of Science and Technology of the People's Republic of China , doi 10.13039/501100002855;
                Funded by: Ministry of Agriculture and Rural Affairs of the People's Republic of China , doi 10.13039/501100011798;
                Categories
                Plant Science
                Original Research

                Plant science & Botany
                potato,continuous cropping,yield,soil biochemical properties,soil microbial communities

                Comments

                Comment on this article