42
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      OncoTargets and Therapy (submit here)

      This international, peer-reviewed Open Access journal by Dove Medical Press focuses on the pathological basis of cancers, potential targets for therapy and treatment protocols to improve the management of cancer patients. Publishing high-quality, original research on molecular aspects of cancer, including the molecular diagnosis, since 2008. Sign up for email alerts here. 50,877 Monthly downloads/views I 4.345 Impact Factor I 7.0 CiteScore I 0.81 Source Normalized Impact per Paper (SNIP) I 0.811 Scimago Journal & Country Rank (SJR)

      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Gemcitabine resistance in breast cancer cells regulated by PI3K/AKT-mediated cellular proliferation exerts negative feedback via the MEK/MAPK and mTOR pathways

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Chemoresistance is a major cause of cancer treatment failure and leads to a reduction in the survival rate of cancer patients. Phosphatidylinositol 3-kinase/protein kinase B/mammalian target of rapamycin (PI3K/AKT/mTOR) and mitogen-activated protein kinase (MAPK) pathways are aberrantly activated in many malignant tumors, including breast cancer, which may indicate an association with breast cancer chemoresistance. In this study, we generated a chemoresistant human breast cancer cell line, MDA-MB-231/gemcitabine (simplified hereafter as “231/Gem”), from MDA-MB-231 human breast cancer cells. Flow cytometry studies revealed that with the same treatment concentration of gemcitabine, 231/Gem cells displayed more robust resistance to gemcitabine, which was reflected by fewer apoptotic cells and enhanced percentage of S-phase cells. Through the use of inverted microscopy, Cell Counting Kit-8, and Transwell assays, we found that compared with parental 231 cells, 231/Gem cells displayed more morphologic projections, enhanced cell proliferative ability, and improved cell migration and invasion. Mechanistic studies revealed that the PI3K/AKT/mTOR and mitogen-activated protein kinase kinase (MEK)/MAPK signaling pathways were activated through elevated expression of phosphorylated (p)-extracellular signal-regulated kinase (ERK), p-AKT, mTOR, p-mTOR, p-P70S6K, and reduced expression of p-P38 and LC3-II (the marker of autophagy) in 231/Gem in comparison to control cells. However, there was no change in the expression of Cyclin D1 and p-adenosine monophosphate-activated protein kinase (AMPK). In culture, inhibitors of PI3K/AKT and mTOR, but not of MEK/MAPK, could reverse the enhanced proliferative ability of 231/Gem cells. Western blot analysis showed that treatment with a PI3K/AKT inhibitor decreased the expression levels of p-AKT, p-MEK, p-mTOR, and p-P70S6K; however, treatments with either MEK/MAPK or mTOR inhibitor significantly increased p-AKT expression. Thus, our data suggest that gemcitabine resistance in breast cancer cells is mainly mediated by activation of the PI3K/AKT signaling pathway. This occurs through elevated expression of p-AKT protein to promote cell proliferation and is negatively regulated by the MEK/MAPK and mTOR pathways.

          Most cited references27

          • Record: found
          • Abstract: found
          • Article: not found

          Target of rapamycin (TOR): an integrator of nutrient and growth factor signals and coordinator of cell growth and cell cycle progression.

          Cell growth (an increase in cell mass and size through macromolecular biosynthesis) and cell cycle progression are generally tightly coupled, allowing cells to proliferate continuously while maintaining their size. The target of rapamycin (TOR) is an evolutionarily conserved kinase that integrates signals from nutrients (amino acids and energy) and growth factors (in higher eukaryotes) to regulate cell growth and cell cycle progression coordinately. In mammals, TOR is best known to regulate translation through the ribosomal protein S6 kinases (S6Ks) and the eukaryotic translation initiation factor 4E-binding proteins. Consistent with the contribution of translation to growth, TOR regulates cell, organ, and organismal size. The identification of the tumor suppressor proteins tuberous sclerosis1 and 2 (TSC1 and 2) and Ras-homolog enriched in brain (Rheb) has biochemically linked the TOR and phosphatidylinositol 3-kinase (PI3K) pathways, providing a mechanism for the crosstalk that occurs between these pathways. TOR is emerging as a novel antitumor target, since the TOR inhibitor rapamycin appears to be effective against tumors resulting from aberrantly high PI3K signaling. Not only may inhibition of TOR be effective in cancer treatment, but rapamycin is an FDA-approved immunosuppressive and cardiology drug. We review here what is known (and not known) about the function of TOR in cellular and animal physiology.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            ER stress negatively regulates AKT/TSC/mTOR pathway to enhance autophagy.

            Disturbance to endoplasmic reticulum (ER) homeostasis that cannot be rescued by the unfolded protein response (UPR) results in autophagy and cell death, but the precise mechanism was largely unknown. Here we demonstrated that ER stress-induced cell death was mediated by autophagy which was partly attributed to the inactivation of the mammalian target of rapamycin (mTOR). Three widely used ER stress inducers including tunicamycin, DTT and MG132 led to the conversion of LC3-I to LC3-II , a commonly used marker of autophagy, as well as the downregulation of mTOR concurrently. TSC -deficient cells with constitutive activation of mTOR exhibited more resistance to ER stress-induced autophagy, compared with their wild-type counterparts. Furthermore, our studies showed that ER stress-induced deactivation of mTOR was attributed to the downregulation of AKT/TSC /mTOR pathway. Phosphatase and tensin homolog (PTEN) and AMP-activated protein kinase (AMPK) as two regulators in this pathway seemed to be absent in this regulation. As a chemical chaperone helping the correct folding of proteins, 4-phenylbutyric acid (4-PBA) partly rescued the AKT/TSC/mTOR pathway in drug-induced acute ER stress. Moreover, constitutively-activated mTOR-induced long-term ER stress attenuated the RTK/PI3K/AKT signaling pathway in response to the stimulation by various growth factors, which could also be partly restored by 4-PBA.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Rottlerin induces autophagy and apoptosis in prostate cancer stem cells via PI3K/Akt/mTOR signaling pathway.

              Autophagy plays an important role in cellular homeostasis through the disposal and recycling of cellular components. Cancer stem cells (CSCs) play major roles in cancer initiation, progression, and drug resistance. Rottlerin (Rott) is an active molecule isolated from Mallotus philippinensis, a medicinal plant used in Ayurvedic Medicine for anti-allergic and anti-helminthic treatments, demonstrates anticancer activities. However, the molecular mechanisms by which it induces autophagy in prostate CSCs have not been examined. The main objective of the paper was to examine the molecular mechanisms by which Rott induces autophagy in prostate CSCs. Autophagy was measured by the lipid modification of light chain-3 (LC3) and the formation of autophagosomes. Apoptosis was measured by flow cytometer analysis. The Western blot analysis was used to examine the effects of Rott on the expression of PI3K, phosphorylation of Akt, phosphorylation of mTOR, and phosphorylation of AMPK in pros CSCs. RNAi technology was used to inhibit the expression of Beclin-1 and ATG-7. Rott induced the lipid modification of light chain-3 (LC3) and the formation of autophagosomes after 24h of Rott treatment in prostate CSCs. Rott-treated prostate CSCs induced transition from LC3-I to LC3-II, a hall mark of autophagy. Rott also induced the expression of Atg5, Atg7, Atg12 and Beclin-1 proteins during autophagy. The knock-down of Atg7 and Beclin-1 blocked Rott-induced autophagy. Furthermore, Rott induced AMPK phosphorylation was blocked by 3-MA, Baf and CHX. In addition, inhibition of AMPK expression by shRNA blocked Rott induced autophagy. In conclusion, a better understanding of the biology of autophagy and the pharmacology of autophagy modulators has the potential for facilitating the development of autophagy-based therapeutic interventions for prostate cancer.
                Bookmark

                Author and article information

                Journal
                Onco Targets Ther
                Onco Targets Ther
                OncoTargets and Therapy
                OncoTargets and therapy
                Dove Medical Press
                1178-6930
                2014
                13 June 2014
                : 7
                : 1033-1042
                Affiliations
                Key Laboratory of Breast Cancer in Shanghai, Breast Cancer Institute, Cancer Hospital, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, People’s Republic of China
                Author notes
                Correspondence: Zhou Luo Ou, Breast Cancer Institute, Cancer Hospital, Fudan University, Shanghai 200032, People’s Republic of China, Tel +86 21 64175590 ext 83422, Fax +86 21 64174774, Email zlou@ 123456shmu.edu.cn
                Article
                ott-7-1033
                10.2147/OTT.S63145
                4063800
                24966685
                98c34c4a-6fa3-40aa-9e4d-c31f048f4088
                © 2014 Yang et al. This work is published by Dove Medical Press Limited, and licensed under Creative Commons Attribution – Non Commercial (unported, v3.0) License

                The full terms of the License are available at http://creativecommons.org/licenses/by-nc/3.0/. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed.

                History
                Categories
                Original Research

                Oncology & Radiotherapy
                chemoresistance,gemcitabine,breast cancer
                Oncology & Radiotherapy
                chemoresistance, gemcitabine, breast cancer

                Comments

                Comment on this article