143
views
0
recommends
+1 Recommend
0 collections
    3
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Toll-like Receptor 9–mediated Recognition of Herpes Simplex Virus-2 by Plasmacytoid Dendritic Cells

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Plasmacytoid dendritic cells (pDCs) have been identified as a potent secretor of the type I interferons (IFNs) in response to CpG as well as several viruses. In this study, we examined the molecular mechanism of virus recognition by pDCs. First, we demonstrated that the CD11c +Gr-1 intB220 + pDCs from mouse bone marrow secreted high levels of IFN-α in response to either live or UV-inactivated Herpes simplex virus-2 (HSV-2). Next, we identified that IFN-α secretion by pDCs required the expression of the adaptor molecule MyD88, suggesting the involvement of a Toll-like receptor (TLR) in HSV-2 recognition. To test whether a TLR mediates HSV-2–induced IFN-α secretion from pDCs, various knockout mice were examined. These experiments revealed a clear requirement for TLR9 in this process. Further, we demonstrated that purified HSV-2 DNA can trigger IFN-α secretion from pDCs and that inhibitory CpG oligonucleotide treatment diminished HSV-induced IFN-α secretion by pDCs in a dose-dependent manner. The recognition of HSV-2 by TLR9 was mediated through an endocytic pathway that was inhibited by chloroquine or bafilomycin A1. The strict requirement for TLR9 in IFN-α secretion was further confirmed by the inoculation of HSV-2 in vivo. Therefore, these results demonstrate a novel mechanism whereby the genomic DNA of a virus can engage TLR9 and result in the secretion of IFN-α by pDCs.

          Related collections

          Most cited references25

          • Record: found
          • Abstract: found
          • Article: not found

          Targeted disruption of the MyD88 gene results in loss of IL-1- and IL-18-mediated function.

          MyD88, originally isolated as a myeloid differentiation primary response gene, is shown to act as an adaptor in interleukin-1 (IL-1) signaling by interacting with both the IL-1 receptor complex and IL-1 receptor-associated kinase (IRAK). Mice generated by gene targeting to lack MyD88 have defects in T cell proliferation as well as induction of acute phase proteins and cytokines in response to IL-1. Increases in interferon-gamma production and natural killer cell activity in response to IL-18 are abrogated. In vivo Th1 response is also impaired. Furthermore, IL-18-induced activation of NF-kappaB and c-Jun N-terminal kinase (JNK) is blocked in MyD88-/- Th1-developing cells. Taken together, these results demonstrate that MyD88 is a critical component in the signaling cascade that is mediated by IL-1 receptor as well as IL-18 receptor.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Quantitative expression of toll-like receptor 1-10 mRNA in cellular subsets of human peripheral blood mononuclear cells and sensitivity to CpG oligodeoxynucleotides.

            The Toll-like receptor (TLR)9 is critical for the recognition of immunostimulatory CpG motifs but may cooperate with other TLRs. We analyzed TLR1-10 mRNA expression by using quantitative real-time PCR in highly purified subsets of human PBMC and determined the sensitivity of these subsets to CpG oligodeoxynucleotides (ODN). TLR1 and TLR6 were expressed in all cell types examined. TLR10 was highly expressed in B cells and weakly expressed in plasmacytoid dendritic cells (PDC). High expression of TLR2 was characteristic for monocytes. PDC and B cells expressed marked levels of TLR7 and TLR9 and were directly sensitive to CpG ODN. In CpG ODN-stimulated PDC and B cells, TLR9 expression rapidly decreased, as opposed to TLR7, which was up-regulated in PDC and decreased in B cells. In monocytes, NK cells, and T cells, TLR7 was absent. Despite low expression of TLR9, monocytes, NK cells, and T cells did not respond to CpG ODN in the absence of PDC but were activated in the presence of PDC. In conclusion, our studies provide evidence that PDC and B cells, but not monocytes, NK cells, or T cells, are primary targets of CpG ODN in peripheral blood. The characteristic expression pattern of TLR1-10 in cellular subsets of human PBMC is consistent with the concept that TLR9 is essential in the recognition of CpG ODN in PDC and B cells. In addition, selective regulation of TLR7 expression in PDC and B cells by CpG ODN revealed TLR7 as a candidate TLR potentially involved in modulating the recognition of CpG motifs.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The nature of the principal type 1 interferon-producing cells in human blood.

              Interferons (IFNs) are the most important cytokines in antiviral immune responses. "Natural IFN-producing cells" (IPCs) in human blood express CD4 and major histocompatibility complex class II proteins, but have not been isolated and further characterized because of their rarity, rapid apoptosis, and lack of lineage markers. Purified IPCs are here shown to be the CD4(+)CD11c- type 2 dendritic cell precursors (pDC2s), which produce 200 to 1000 times more IFN than other blood cells after microbial challenge. pDC2s are thus an effector cell type of the immune system, critical for antiviral and antitumor immune responses.
                Bookmark

                Author and article information

                Journal
                J Exp Med
                The Journal of Experimental Medicine
                The Rockefeller University Press
                0022-1007
                1540-9538
                4 August 2003
                : 198
                : 3
                : 513-520
                Affiliations
                [1 ]Section of Immunobiology, Yale University School of Medicine, New Haven, CT 06520
                [2 ]Department of Epidemiology and Public Health, Yale University School of Medicine, New Haven, CT 06520
                [3 ]Department of Host Defense, Research Institute for Microbial Diseases, Osaka University, SORST of Japan Science and Technology Corporation, 3-1 Yamada-oka, Suita, Osaka 565-0871, Japan
                Author notes

                Address correspondence to A. Iwasaki, Department of Epidemiology and Public Health, 60 College St., LEPH 716, New Haven, CT 06510. Phone: 203-785-2919; Fax: 203-785-7552; email: akiko.iwasaki@ 123456yale.edu

                Article
                20030162
                10.1084/jem.20030162
                2194085
                12900525
                98cf2096-597d-46c4-bbba-94899228b860
                Copyright © 2003, The Rockefeller University Press
                History
                : 31 January 2003
                : 20 May 2003
                : 6 June 2003
                Categories
                Brief Definitive Report

                Medicine
                dna virus,cpg motif,innate immunity,type i interferons,virus infection
                Medicine
                dna virus, cpg motif, innate immunity, type i interferons, virus infection

                Comments

                Comment on this article