12
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Connexin 37 is localized in renal epithelia and responds to changes in dietary salt intake.

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Connexins are the main components of gap junction channels, which are important for intercellular communication. In the kidney, several members of the connexin (Cx) family have been identified. Renal vascular expression and hemodynamic impacts have so far been shown for Cx37, Cx40, and Cx43. Additionally, Cx30, Cx30.3, and Cx43 have been identified to be part of tubular epithelial gap junctions and/or hemichannels. However, the localization and role of other Cx family members in renal epithelial structures remain undetermined. We aimed to localize Cx37 in the kidney to obtain information on its epithelial expression and potential functions. Immunohistochemistry in rodent kidney showed characteristic punctate patterns in the vasculature and along the nephron. Strong basolateral expression was found in the thick ascending limb and distal convoluted tubule. Weaker abundances were found in the proximal tubule and the collecting duct also at the basolateral side. In situ hybridization and real-time PCR of isolated nephron segments confirmed this distribution at the mRNA level. Ultrastructurally, Cx37 immunostaining was confined to basolateral cell interdigitations and infoldings. As a functional approach, rats were fed low- or high-salt diets. Compared with control and high-salt diets, rats treated with low-salt diet showed significantly increased Cx37 mRNA and protein levels. This may be indicative of an adaptive tubular response to changes in sodium reabsorption. In summary, renal epithelia express Cx37 in their basolateral membranes. Here, the formation of Cx37 gap junctions may be involved in cellular communication and adjustments of vectorial epithelial transport.

          Related collections

          Author and article information

          Journal
          Am. J. Physiol. Renal Physiol.
          American journal of physiology. Renal physiology
          American Physiological Society
          1522-1466
          1522-1466
          Jan 2010
          : 298
          : 1
          Affiliations
          [1 ] Institute of Anatomy, Charité-Universitätsmedizin Berlin, Berlin, Germany.
          Article
          00295.2009
          10.1152/ajprenal.00295.2009
          19828678
          98d29770-7e22-4bcf-9fa4-197492f132d7
          History

          Comments

          Comment on this article