5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Evidence for Microplastics Contamination of the Remote Tributary of the Yenisei River, Siberia—The Pilot Study Results

      , , , , , ,
      Water
      MDPI AG

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          This study is a pioneering attempt to count microplastics (MPs) in the Yenisei River system to clarify the role of Siberian Rivers in the transport of MPs to the Arctic Ocean. The average MPs content in the surface water of the Yenisei large tributary, the Nizhnyaya Tunguska River, varied from 1.20 ± 0.70 to 4.53 ± 2.04 items/m3, tending to increase along the watercourse (p < 0.05). Concentrations of MPs in bottom sediments of the two rivers were 235 ± 83.0 to 543 ± 94.1 with no tendency of downstream increasing. Linear association (r = 0.952) between average organic matter content and average counts of MPs in bottom sediments occurred. Presumably MPs originated from the daily activities of the in-situ population. Further spatial-temporal studies are needed to estimate the riverine MPs fluxes into the Eurasian Arctic seas.

          Related collections

          Most cited references52

          • Record: found
          • Abstract: not found
          • Article: not found

          Lost at sea: where is all the plastic?

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Microplastics in the marine environment: a review of the methods used for identification and quantification.

            This review of 68 studies compares the methodologies used for the identification and quantification of microplastics from the marine environment. Three main sampling strategies were identified: selective, volume-reduced, and bulk sampling. Most sediment samples came from sandy beaches at the high tide line, and most seawater samples were taken at the sea surface using neuston nets. Four steps were distinguished during sample processing: density separation, filtration, sieving, and visual sorting of microplastics. Visual sorting was one of the most commonly used methods for the identification of microplastics (using type, shape, degradation stage, and color as criteria). Chemical and physical characteristics (e.g., specific density) were also used. The most reliable method to identify the chemical composition of microplastics is by infrared spectroscopy. Most studies reported that plastic fragments were polyethylene and polypropylene polymers. Units commonly used for abundance estimates are "items per m(2)" for sediment and sea surface studies and "items per m(3)" for water column studies. Mesh size of sieves and filters used during sampling or sample processing influence abundance estimates. Most studies reported two main size ranges of microplastics: (i) 500 μm-5 mm, which are retained by a 500 μm sieve/net, and (ii) 1-500 μm, or fractions thereof that are retained on filters. We recommend that future programs of monitoring continue to distinguish these size fractions, but we suggest standardized sampling procedures which allow the spatiotemporal comparison of microplastic abundance across marine environments.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              On a Test of Whether one of Two Random Variables is Stochastically Larger than the Other

                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                WATEGH
                Water
                Water
                MDPI AG
                2073-4441
                November 2021
                November 16 2021
                : 13
                : 22
                : 3248
                Article
                10.3390/w13223248
                98dc4cdc-b872-4929-b945-e34d0a15d5e9
                © 2021

                https://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article