77
views
0
recommends
+1 Recommend
0 collections
    8
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      What have we learned from brucellosis in the mouse model?

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Brucellosis is a zoonosis caused by Brucella species. Brucellosis research in natural hosts is often precluded by practical, economical and ethical reasons and mice are widely used. However, mice are not natural Brucella hosts and the course of murine brucellosis depends on bacterial strain virulence, dose and inoculation route as well as breed, genetic background, age, sex and physiological statu of mice. Therefore, meaningful experiments require a definition of these variables. Brucella spleen replication profiles are highly reproducible and course in four phases: i), onset or spleen colonization (first 48 h); ii), acute phase, from the third day to the time when bacteria reach maximal numbers; iii), chronic steady phase, where bacterial numbers plateaus; and iv), chronic declining phase, during which brucellae are eliminated. This pattern displays clear physiopathological signs and is sensitive to small virulence variations, making possible to assess attenuation when fully virulent bacteria are used as controls. Similarly, immunity studies using mice with known defects are possible. Mutations affecting INF-γ, TLR9, Myd88, Tγδ and TNF-β favor Brucella replication; whereas IL-1β, IL-18, TLR4, TLR5, TLR2, NOD1, NOD2, GM-CSF, IL/17r, Rip2, TRIF, NK or Nramp1 deficiencies have no noticeable effects. Splenomegaly development is also useful: it correlates with IFN-γ and IL-12 levels and with Brucella strain virulence. The genetic background is also important: Brucella-resistant mice (C57BL) yield lower splenic bacterial replication and less splenomegaly than susceptible breeds. When inoculum is increased, a saturating dose above which bacterial numbers per organ do not augment, is reached. Unlike many gram-negative bacteria, lethal doses are large (≥ 10 8 bacteria/mouse) and normally higher than the saturating dose. Persistence is a useful virulence/attenuation index and is used in vaccine (Residual Virulence) quality control. Vaccine candidates are also often tested in mice by determining splenic Brucella numbers after challenging with appropriate virulent brucellae doses at precise post-vaccination times. Since most live or killed Brucella vaccines provide some protection in mice, controls immunized with reference vaccines (S19 or Rev1) are critical. Finally, mice have been successfully used to evaluate brucellosis therapies. It is concluded that, when used properly, the mouse is a valuable brucellosis model.

          Related collections

          Most cited references169

          • Record: found
          • Abstract: found
          • Article: not found

          Of mice and not men: differences between mouse and human immunology.

          Mice are the experimental tool of choice for the majority of immunologists and the study of their immune responses has yielded tremendous insight into the workings of the human immune system. However, as 65 million years of evolution might suggest, there are significant differences. Here we outline known discrepancies in both innate and adaptive immunity, including: balance of leukocyte subsets, defensins, Toll receptors, inducible NO synthase, the NK inhibitory receptor families Ly49 and KIR, FcR, Ig subsets, the B cell (BLNK, Btk, and lambda5) and T cell (ZAP70 and common gamma-chain) signaling pathway components, Thy-1, gammadelta T cells, cytokines and cytokine receptors, Th1/Th2 differentiation, costimulatory molecule expression and function, Ag-presenting function of endothelial cells, and chemokine and chemokine receptor expression. We also provide examples, such as multiple sclerosis and delayed-type hypersensitivity, where complex multicomponent processes differ. Such differences should be taken into account when using mice as preclinical models of human disease.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Development of structures and transport functions in the mouse placenta.

            The placenta is essential for sustaining the growth of the fetus during gestation, and defects in its function result in fetal growth restriction or, if more severe, fetal death. Several molecular pathways have been identified that are essential for development of the placenta, and mouse mutants offer new insights into the cell biology of placental development and physiology of nutrient transport.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Using genomic data to unravel the root of the placental mammal phylogeny.

              The phylogeny of placental mammals is a critical framework for choosing future genome sequencing targets and for resolving the ancestral mammalian genome at the nucleotide level. Despite considerable recent progress defining superordinal relationships, several branches remain poorly resolved, including the root of the placental tree. Here we analyzed the genome sequence assemblies of human, armadillo, elephant, and opossum to identify informative coding indels that would serve as rare genomic changes to infer early events in placental mammal phylogeny. We also expanded our species sampling by including sequence data from >30 ongoing genome projects, followed by PCR and sequencing validation of each indel in additional taxa. Our data provide support for a sister-group relationship between Afrotheria and Xenarthra (the Atlantogenata hypothesis), which is in turn the sister-taxon to Boreoeutheria. We failed to recover any indels in support of a basal position for Xenarthra (Epitheria), which is suggested by morphology and a recent retroposon analysis, or a hypothesis with Afrotheria basal (Exafricoplacentalia), which is favored by phylogenetic analysis of large nuclear gene data sets. In addition, we identified two retroposon insertions that also support Atlantogenata and none for the alternative hypotheses. A revised molecular timescale based on these phylogenetic inferences suggests Afrotheria and Xenarthra diverged from other placental mammals approximately 103 (95-114) million years ago. We discuss the impacts of this topology on earlier phylogenetic reconstructions and repeat-based inferences of phylogeny.
                Bookmark

                Author and article information

                Journal
                Vet Res
                Vet. Res
                Veterinary Research
                BioMed Central
                0928-4249
                1297-9716
                2012
                13 April 2012
                : 43
                : 1
                : 29
                Affiliations
                [1 ]Instituto de Agrobiotecnología, CSIC-UPNA-Gobierno de Navarra, Pamplona, Spain
                [2 ]Centro de Investigación y Tecnología Agroalimentaria (CITA) de Aragón, Zaragoza, Spain
                [3 ]Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université, Faculté de Sciences de Luminy, Luminy, France
                [4 ]Institut National de la Santé et de la Recherche Médicale U631, Marseille, France
                [5 ]Centre National de la Recherche Scientifique UMR6102, Marseille, France
                [6 ]Departamento de Microbiología y Parasitología, Universidad de Navarra, Pamplona, Spain
                [7 ]Instituto de Salud Tropical, Universidad de Navarra, Pamplona, Spain
                [8 ]Programa de Investigación en Enfermedades Tropicales, Escuela de Medicina Veterinaria, Universidad Nacional, Heredia, Costa Rica
                [9 ]Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
                Article
                1297-9716-43-29
                10.1186/1297-9716-43-29
                3410789
                22500859
                98e48b11-28dc-4744-8405-505cc71e7ac8
                Copyright ©2012 Grillo et al.; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License(http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 13 July 2011
                : 13 April 2012
                Categories
                Review

                Veterinary medicine
                Veterinary medicine

                Comments

                Comment on this article