0
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      RoVi, Robotic manipulator with visuo-haptic sensing, ERC

      , , ,

      Impact

      Science Impact, Ltd.

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          This proof-of-concept project aims to develop and bring to market a novel visuo-haptic sensor system for robotic manipulators, which allows for multimodal sensing, reduced system complexity and significantly lower costs compared to current systems. It replaces dedicated force sensors with passive components and a camera, providing coherent measurements of both force and contact shape. Three sensor setups for grippers, mobile platforms and tools on the endeffector have already been implemented as research prototypes in the context of the ERC Starting Grant ProHaptics. The commercial prototype to be developed within this project will consist of a standard commercial gripper, the visuo-haptic sensor, as well as soft-ware for manipulation planning. In later stages, it is planned to apply the concept to an entire robotic arm, replacing the dedicated and expensive joint and torque sensors required today. Costs and system complexity are cut considerably by our approach since rigid mechanics as well as highly specialized sensor systems as used by current robot arms are no longer required. The application focus of this proof-of-concept project is collaborative production. This concept helps to keep production competitive in in high-income countries. While our market entry strategy targets the commercially highly relevant production scenario, we believe that this paradigm will open new markets for robotic systems also in interpersonal communication, household robotics and games/entertainment. Such systems need low-cost multimodal sensor systems, which provide a rich representation of the environment. In a recent market study, a high interest for robotic manipulators that operate in un-structured environments and offer natural compliance has been identified, especially in the application areas of robotic commissioning and joint mounting, verification and documentation of components.

          Related collections

          Author and article information

          Journal
          Impact
          impact
          Science Impact, Ltd.
          2398-7073
          December 26 2018
          December 26 2018
          : 2018
          : 11
          : 45-47
          Article
          10.21820/23987073.2018.11.45
          © 2018

          This work is licensed under a Creative Commons Attribution 4.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

          Earth & Environmental sciences, Medicine, Computer science, Agriculture, Engineering

          Comments

          Comment on this article