9
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      OncoTargets and Therapy (submit here)

      This international, peer-reviewed Open Access journal by Dove Medical Press focuses on the pathological basis of cancers, potential targets for therapy and treatment protocols to improve the management of cancer patients. Publishing high-quality, original research on molecular aspects of cancer, including the molecular diagnosis, since 2008. Sign up for email alerts here. 50,877 Monthly downloads/views I 4.345 Impact Factor I 7.0 CiteScore I 0.81 Source Normalized Impact per Paper (SNIP) I 0.811 Scimago Journal & Country Rank (SJR)

      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Grape seed procyanidin B2 promotes the autophagy and apoptosis in colorectal cancer cells via regulating PI3K/Akt signaling pathway

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Aim: Colorectal cancer (CRC) is a major malignancy in China, which is the critical risk of people health. Many natural herbs extracts have been found to exhibit good therapeutic effect on CRC. Our previous study found that grape seed procyanidins B2 (PB2) would induce CRC cell death. However, the molecular mechanism underlying its anti-tumor effect on CRC remains unclear. Thereby, this study aimed to investigate the anti-tumor mechanism of PB2 on CRC.

          Methods: CCK-8, western blotting, flow cytometry, qRT-PCR and animal study were used in the current study.

          Results: The in vitro and in vivo data demonstrated that PB2 could promote the apoptosis of CRC cells in a dose-dependent manner, which was significantly reversed by caspase 3 inhibitor. Meanwhile, PB2 dose-dependently induced autophagy in CRC cells, which was markedly attenuated by autophagy inhibitor 3-MA. In addition, PB2 dose-dependently inhibited the expressions of p-PI3K, p-Akt and p-mTOR in the cells.

          Conclusion: PB2 dose-dependently induced apoptosis and autophagy in CRC cells via downregulation of PI3K/Akt pathway. This study provided the experimental basis for further development of PB2 as a new effective anticancer drug for the patients with CRC.

          Most cited references24

          • Record: found
          • Abstract: found
          • Article: not found

          Programmed cell death pathways in cancer: a review of apoptosis, autophagy and programmed necrosis.

          Programmed cell death (PCD), referring to apoptosis, autophagy and programmed necrosis, is proposed to be death of a cell in any pathological format, when mediated by an intracellular program. These three forms of PCD may jointly decide the fate of cells of malignant neoplasms; apoptosis and programmed necrosis invariably contribute to cell death, whereas autophagy can play either pro-survival or pro-death roles. Recent bulk of accumulating evidence has contributed to a wealth of knowledge facilitating better understanding of cancer initiation and progression with the three distinctive types of cell death. To be able to decipher PCD signalling pathways may aid development of new targeted anti-cancer therapeutic strategies. Thus in this review, we present a brief outline of apoptosis, autophagy and programmed necrosis pathways and apoptosis-related microRNA regulation, in cancer. Taken together, understanding PCD and the complex interplay between apoptosis, autophagy and programmed necrosis may ultimately allow scientists and clinicians to harness the three types of PCD for discovery of further novel drug targets, in the future cancer treatment. © 2012 Blackwell Publishing Ltd.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Caspase control: protagonists of cancer cell apoptosis.

            Emergence of castration-resistant metastatic prostate cancer is due to activation of survival pathways, including apoptosis suppression and anoikis resistance, and increased neovascularization. Thus targeting of apoptotic players is of critical significance in prostate cancer therapy since loss of apoptosis and resistance to anoikis are critical in aberrant malignant growth, metastasis and conferring therapeutic failure. The majority of therapeutic agents act through intrinsic mitochondrial, extrinsic death receptor pathways or endoplasmic reticulum stress pathways to induce apoptosis. Current therapeutic strategies target restoring regulatory molecules that govern the pro-survival pathways such as PTEN which regulates AKT activity. Other strategies focus on reactivating the apoptotic pathways either by down-regulating anti-apoptotic players such as BCL-2 or by up-regulating pro-apoptotic protein families, most notably, the caspases. Caspases are a family of cystine proteases which serve critical roles in apoptotic and inflammatory signaling pathways. During tumorigenesis, significant loss or inactivation of lead members in the caspase family leads to impairing apoptosis induction, causing a dramatic imbalance in the growth dynamics, ultimately resulting in aberrant growth of human cancers. Recent exploitation of apoptosis pathways towards re-instating apoptosis induction via caspase re-activation has provided new molecular platforms for the development of therapeutic strategies effective against advanced prostate cancer as well as other solid tumors. This review will discuss the current cellular landscape featuring the caspase family in tumor cells and their activation via pharmacologic intervention towards optimized anti-cancer therapeutic modalities. This article is part of a Special Issue entitled "Apoptosis: Four Decades Later".
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Rottlerin induces autophagy and apoptosis in prostate cancer stem cells via PI3K/Akt/mTOR signaling pathway.

              Autophagy plays an important role in cellular homeostasis through the disposal and recycling of cellular components. Cancer stem cells (CSCs) play major roles in cancer initiation, progression, and drug resistance. Rottlerin (Rott) is an active molecule isolated from Mallotus philippinensis, a medicinal plant used in Ayurvedic Medicine for anti-allergic and anti-helminthic treatments, demonstrates anticancer activities. However, the molecular mechanisms by which it induces autophagy in prostate CSCs have not been examined. The main objective of the paper was to examine the molecular mechanisms by which Rott induces autophagy in prostate CSCs. Autophagy was measured by the lipid modification of light chain-3 (LC3) and the formation of autophagosomes. Apoptosis was measured by flow cytometer analysis. The Western blot analysis was used to examine the effects of Rott on the expression of PI3K, phosphorylation of Akt, phosphorylation of mTOR, and phosphorylation of AMPK in pros CSCs. RNAi technology was used to inhibit the expression of Beclin-1 and ATG-7. Rott induced the lipid modification of light chain-3 (LC3) and the formation of autophagosomes after 24h of Rott treatment in prostate CSCs. Rott-treated prostate CSCs induced transition from LC3-I to LC3-II, a hall mark of autophagy. Rott also induced the expression of Atg5, Atg7, Atg12 and Beclin-1 proteins during autophagy. The knock-down of Atg7 and Beclin-1 blocked Rott-induced autophagy. Furthermore, Rott induced AMPK phosphorylation was blocked by 3-MA, Baf and CHX. In addition, inhibition of AMPK expression by shRNA blocked Rott induced autophagy. In conclusion, a better understanding of the biology of autophagy and the pharmacology of autophagy modulators has the potential for facilitating the development of autophagy-based therapeutic interventions for prostate cancer.
                Bookmark

                Author and article information

                Journal
                Onco Targets Ther
                Onco Targets Ther
                OTT
                ott
                OncoTargets and therapy
                Dove
                1178-6930
                24 May 2019
                2019
                : 12
                : 4109-4118
                Affiliations
                [1 ]Department of TCM, Shanghai Putuo District People’s Hospital , Shanghai 200060, People’s Republic of China
                [2 ]Department of TCM, Shanghai Huangpu District Wuliqiao Community Health Center , Shanghai, 200023, People’s Republic of China
                Author notes
                Correspondence: Shurong Gao; Zhijun WangDepartment of TCM, Shanghai Putuo District People’s Hospital, No. 1291, Jiangning Road , Shanghai200060, People’s Republic of ChinaTel +86 213 227 4550Email shuronggao@ 123456yandex.com ; zhijunwang90@ 123456126.com
                [*]

                These authors contributed equally to this work

                Article
                195615
                10.2147/OTT.S195615
                6538883
                31213831
                98ee3646-2d86-44c0-bffc-daf3d355707e
                © 2019 Zhang et al.

                This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution – Non Commercial (unported, v3.0) License ( http://creativecommons.org/licenses/by-nc/3.0/). By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms ( https://www.dovepress.com/terms.php).

                History
                : 22 November 2018
                : 07 March 2019
                Page count
                Figures: 6, References: 31, Pages: 10
                Categories
                Original Research

                Oncology & Radiotherapy
                colorectal cancer,grape seed procyanidin extract,autophagy,apoptosis,pi3k/akt/mtor signaling pathway

                Comments

                Comment on this article