13
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Chitosan-Based Functional Materials for Skin Wound Repair: Mechanisms and Applications

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Skin wounds not only cause physical pain for patients but also are an economic burden for society. It is necessary to seek out an efficient approach to promote skin repair. Hydrogels are considered effective wound dressings. They possess many unique properties like biocompatibility, biodegradability, high water uptake and retention etc., so that they are promising candidate materials for wound healing. Chitosan is a polymeric biomaterial obtained by the deacetylation of chitin. With the properties of easy acquisition, antibacterial and hemostatic activity, and the ability to promote skin regeneration, hydrogel-like functional wound dressings (represented by chitosan and its derivatives) have received extensive attentions for their effectiveness and mechanisms in promoting skin wound repair. In this review, we extensively discussed the mechanisms with which chitosan-based functional materials promote hemostasis, anti-inflammation, proliferation of granulation in wound repair. We also provided the latest information about the applications of such materials in wound treatment. In addition, we summarized the methods to enhance the advantages and maintain the intrinsic nature of chitosan via incorporating other chemical components, active biomolecules and other substances into the hydrogels.

          Related collections

          Most cited references66

          • Record: found
          • Abstract: found
          • Article: not found

          Antibacterial adhesive injectable hydrogels with rapid self-healing, extensibility and compressibility as wound dressing for joints skin wound healing

          Designing wound dressing materials with outstanding therapeutic effects, self-healing, adhesiveness and suitable mechanical property has great practical significance in healthcare, especially for joints skin wound healing. Here, we designed a kind of self-healing injectable micelle/hydrogel composites with multi-functions as wound dressing for joint skin damage. By combining the dynamic Schiff base and copolymer micelle cross-linking in one system, a series of hydrogels were prepared by mixing quaternized chitosan (QCS) and benzaldehyde-terminated Pluronic®F127 (PF127-CHO) under physiological conditions. The inherent antibacterial property, pH-dependent biodegradation and release behavior were investigated to confirm multi-functions of wound dressing. The hydrogel dressings showed suitable stretchable and compressive property, comparable modulus with human skin, good adhesiveness and fast self-healing ability to bear deformation. The hydrogels exhibited efficient hemostatic performance and biocompatibility. Moreover, the curcumin loaded hydrogel showed good antioxidant ability and pH responsive release profiles. In vivo experiments indicated that curcumin loaded hydrogels significantly accelerated wound healing rate with higher granulation tissue thickness and collagen disposition and upregulated vascular endothelial growth factor (VEGF) in a full-thickness skin defect model. Taken together, the antibacterial adhesive hydrogels with self-healing and good mechanical property offer significant promise as dressing materials for joints skin wound healing.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Growth factors and cytokines in wound healing.

            Wound healing is an evolutionarily conserved, complex, multicellular process that, in skin, aims at barrier restoration. This process involves the coordinated efforts of several cell types including keratinocytes, fibroblasts, endothelial cells, macrophages, and platelets. The migration, infiltration, proliferation, and differentiation of these cells will culminate in an inflammatory response, the formation of new tissue and ultimately wound closure. This complex process is executed and regulated by an equally complex signaling network involving numerous growth factors, cytokines and chemokines. Of particular importance is the epidermal growth factor (EGF) family, transforming growth factor beta (TGF-beta) family, fibroblast growth factor (FGF) family, vascular endothelial growth factor (VEGF), granulocyte macrophage colony stimulating factor (GM-CSF), platelet-derived growth factor (PDGF), connective tissue growth factor (CTGF), interleukin (IL) family, and tumor necrosis factor-alpha family. Currently, patients are treated by three growth factors: PDGF-BB, bFGF, and GM-CSF. Only PDGF-BB has successfully completed randomized clinical trials in the Unites States. With gene therapy now in clinical trial and the discovery of biodegradable polymers, fibrin mesh, and human collagen serving as potential delivery systems other growth factors may soon be available to patients. This review will focus on the specific roles of these growth factors and cytokines during the wound healing process.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Natural skin surface pH is on average below 5, which is beneficial for its resident flora.

              Variable skin pH values are being reported in literature, all in the acidic range but with a broad range from pH 4.0 to 7.0. In a multicentre study (N = 330), we have assessed the skin surface pH of the volar forearm before and after refraining from showering and cosmetic product application for 24 h. The average pH dropped from 5.12 +/- 0.56 to 4.93 +/- 0.45. On the basis of this pH drop, it is estimated that the 'natural' skin surface pH is on average 4.7, i.e. below 5. This is in line with existing literature, where a relatively large number of reports (c. 50%) actually describes pH values below 5.0; this is in contrast to the general assumption, that skin surface pH is on average between 5.0 and 6.0. Not only prior use of cosmetic products, especially soaps, have profound influence on skin surface pH, but the use of plain tap water, in Europe with a pH value generally around 8.0, will increase skin pH up to 6 h after application before returning to its 'natural' value of on average below 5.0. It is demonstrated that skin with pH values below 5.0 is in a better condition than skin with pH values above 5.0, as shown by measuring the biophysical parameters of barrier function, moisturization and scaling. The effect of pH on adhesion of resident skin microflora was also assessed; an acid skin pH (4-4.5) keeps the resident bacterial flora attached to the skin, whereas an alkaline pH (8-9) promotes the dispersal from the skin.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Bioeng Biotechnol
                Front Bioeng Biotechnol
                Front. Bioeng. Biotechnol.
                Frontiers in Bioengineering and Biotechnology
                Frontiers Media S.A.
                2296-4185
                18 February 2021
                2021
                : 9
                : 650598
                Affiliations
                [1] 1School of Medicine, Ningbo University , Ningbo, China
                [2] 2Lihuili Hospital, Affiliated Hospital of Ningbo University , Ningbo, China
                [3] 3School of Materials Science and Chemical Engineering, Ningbo University , Ningbo, China
                [4] 4Ningbo Baoting Biotechnology Co., Ltd. , Ningbo, China
                Author notes

                Edited by: Changyou Gao, Zhejiang University, China

                Reviewed by: Xin Zhao, Hong Kong Polytechnic University, Hong Kong; Baolin Guo, Xi’an Jiaotong University, China

                *Correspondence: Yabin Zhu, zhuyabin@ 123456nbu.edu.cn

                This article was submitted to Biomaterials, a section of the journal Frontiers in Bioengineering and Biotechnology

                Article
                10.3389/fbioe.2021.650598
                7931995
                33681176
                98fd0ecc-1726-4d59-af34-848e85d17127
                Copyright © 2021 Feng, Luo, Ke, Qiu, Wang, Zhu, Hou, Xu and Wu.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 07 January 2021
                : 01 February 2021
                Page count
                Figures: 7, Tables: 1, Equations: 0, References: 67, Pages: 15, Words: 0
                Categories
                Bioengineering and Biotechnology
                Review

                chitosan,functional materials,hydrogels,wound repair,mechanisms

                Comments

                Comment on this article