2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Early complement components in Alzheimer's disease brains.

      Acta Neuropathologica
      Aged, Aged, 80 and over, Alzheimer Disease, immunology, metabolism, pathology, Base Sequence, Blotting, Western, Brain Chemistry, Complement Activation, Female, Humans, Immunohistochemistry, Liver, chemistry, Male, Middle Aged, Molecular Sequence Data, Polymerase Chain Reaction

      Read this article at

      ScienceOpenPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Activation products of the early complement components C1, C4 and C3 can be found colocalized with diffuse and fibrillar beta-amyloid (beta/A4) deposits in Alzheimer's disease (AD) brains. Immunohistochemically, C1-esterase inhibitor (C1-Inh) and the C1 subcomponents C1s and C1r can not, or only occasionally, be detected in plaques or in astrocytes. The present finding that C1q, C1s and C1-Inh mRNA are present in both AD and control brains suggests that the variable immunohistochemical staining results for C1r, C1s and C1-Inh are due to a rapid consumption, and that the inability to detect C1s, C1r or C1-Inh is probably due to the dissociation of C1s-C1-Inh and C1r-C1-Inh complexes from the activator-bound C1q into the fluid phase. Employing monoclonal antibodies specific for different forms of C1-Inh, no complexed C1-Inh could be found, whereas inactivated C1-Inh seems to be present in astrocytes surrounding beta/A4 plaques in AD brains. These findings, together with our finding (using reverse transcriptase-polymerase chain reaction) that C1-Inh is locally produced in the brain, suggest that in the brain complement activation at the C1 level is regulated by C1-Inh. Immunohistochemically, no evidence for the presence of the late complement components C5, C7 and C9, or of the membrane attack complex (MAC), was found in beta/A4 plaques. In contrast to the mRNA encoding the early components, that of the late complement components appears to be hardly detectable (C7) or absent (C9). Thus, without blood-brain-barrier impairment, the late complement components are probably present at too low a concentration to allow the formation of the MAC, which is generally believed to be responsible for at least some of the neurodegenerative effects observed in AD. Therefore, the present findings support the idea that in AD, complement does not function as an inflammatory mediator through MAC formation, but through the action of early component activation products.

          Related collections

          Author and article information

          Comments

          Comment on this article