11
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Autoamplification and Competition Drive Symmetry Breaking: Initiation of Centriole Duplication by the PLK4-STIL Network

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Summary

          Centrioles, the cores of centrosomes and cilia, duplicate every cell cycle to ensure their faithful inheritance. How only a single procentriole is produced on each mother centriole remains enigmatic. We propose the first mechanistic biophysical model for procentriole initiation which posits that interactions between kinase PLK4 and its activator-substrate STIL are central for procentriole initiation. The model recapitulates the transition from a uniform “ring” of PLK4 surrounding the mother centriole to a single PLK4 “spot” that initiates procentriole assembly. This symmetry breaking requires autocatalytic activation of PLK4 and enhanced centriolar anchoring of PLK4 by phosphorylated STIL. We find that in situ degradation of active PLK4 cannot break symmetry. The model predicts that competition between transient PLK4 activity maxima for PLK4-STIL complexes destabilizes the PLK4 ring and produces instead a single PLK4 spot. Weakening of competition by overexpression of PLK4 and STIL causes progressive addition of supernumerary procentrioles, as observed experimentally.

          Graphical Abstract

          Highlights

          • Kinase PLK4 and scaffold STIL form the core of the centriole initiation network

          • Dual PLK4-activity-based positive feedback breaks symmetry of the PLK4 localization

          • Competition between nascent PLK4 activity maxima determines the single procentriole

          • In situ degradation of PLK4 cannot break the symmetry in the absence of competition

          Abstract

          Biological Sciences; Developmental Biology; In Silico Biology

          Related collections

          Most cited references61

          • Record: found
          • Abstract: found
          • Article: not found

          SAK/PLK4 is required for centriole duplication and flagella development.

          SAK/PLK4 is a distinct member of the polo-like kinase family. SAK-/- mice die during embryogenesis, whereas SAK+/- mice develop liver and lung tumors and SAK+/- MEFs show mitotic abnormalities. However, the mechanism underlying these phenotypes is still not known. Here, we show that downregulation of SAK in Drosophila cells, by mutation or RNAi, leads to loss of centrioles, the core structures of centrosomes. Such cells are able to undergo repeated rounds of cell division, but display broad disorganized mitotic spindle poles. We also show that SAK mutants lose their centrioles during the mitotic divisions preceding male meiosis but still produce cysts of 16 primary spermatocytes as in the wild-type. Mathematical modeling of the stereotyped cell divisions of spermatogenesis can account for such loss by defective centriole duplication. The majority of spermatids in SAK mutants lack centrioles and so are unable to make sperm axonemes. Finally, we show that depletion of SAK in human cells also prevents centriole duplication and gives rise to mitotic abnormalities. SAK/PLK4 is necessary for centriole duplication both in Drosophila and human cells. Drosophila cells tolerate the lack of centrioles and undertake mitosis but cannot form basal bodies and hence flagella. Human cells depleted of SAK show error-prone mitosis, likely to underlie its tumor-suppressor role.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Plk4-induced centriole biogenesis in human cells.

            We show that overexpression of Polo-like kinase 4 (Plk4) in human cells induces centrosome amplification through the simultaneous generation of multiple procentrioles adjoining each parental centriole. This provided an opportunity for dissecting centriole assembly and characterizing assembly intermediates. Critical components were identified and ordered into an assembly pathway through siRNA and localized through immunoelectron microscopy. Plk4, hSas-6, CPAP, Cep135, gamma-tubulin, and CP110 were required at different stages of procentriole formation and in association with different centriolar structures. Remarkably, hSas-6 associated only transiently with nascent procentrioles, whereas Cep135 and CPAP formed a core structure within the proximal lumen of both parental and nascent centrioles. Finally, CP110 was recruited early and then associated with the growing distal tips, indicating that centrioles elongate through insertion of alpha-/beta-tubulin underneath a CP110 cap. Collectively, these data afford a comprehensive view of the assembly pathway underlying centriole biogenesis in human cells.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Once and only once: mechanisms of centriole duplication and their deregulation in disease

              Centrioles are conserved microtubule-based organelles that form the core of the centrosome and act as templates for the formation of cilia and flagella. Centrioles have important roles in most microtubule related processes, including motility, cell division and cell signaling. To coordinate these diverse cellular processes, centriole number must be tightly controlled. In cycling cells, one new centriole is formed next to each preexisting centriole in every cell cycle. Advances in imaging, proteomics, structural biology and genome editing have revealed new insights into centriole biogenesis, how centriole numbers are controlled and how alterations in these structures contribute to diseases such as cancer and neurodevelopmental disorders. Moreover, recent work has uncovered the existence of surveillance pathways that limit proliferation of cells with numerical centriole aberrations. Here we discuss recent progress in this field with a focus on signaling pathways and molecular mechanisms.
                Bookmark

                Author and article information

                Contributors
                Journal
                iScience
                iScience
                iScience
                Elsevier
                2589-0042
                11 October 2018
                26 October 2018
                11 October 2018
                : 8
                : 222-235
                Affiliations
                [1 ]Centre for Synthetic and Systems Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, EH9 3BF UK
                [2 ]Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
                Author notes
                []Corresponding author andrew.goryachev@ 123456ed.ac.uk
                [3]

                Lead Contact

                Article
                S2589-0042(18)30162-7
                10.1016/j.isci.2018.10.003
                6197440
                30340068
                99034311-6987-4ee5-845a-6971c0f0d15f
                © 2018 The Author(s)

                This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

                History
                : 13 August 2018
                : 26 September 2018
                : 4 October 2018
                Categories
                Article

                biological sciences,developmental biology,in silico biology

                Comments

                Comment on this article