10
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Filtering the Junk: Assigning Function to the Mosquito Non-Coding Genome

      review-article
      , , *
      Insects
      MDPI
      miRNA, lncRNA, enhancer, non-coding, regulatory element

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Simple Summary

          In eukaryotes, the fraction of the genome not coding for proteins vastly outsizes the portion containing protein-coding genes. This non-coding genome, once termed “junk”, was thought for decades to be inconsequential to the biology of an organism. It is now widely acknowledged that elements within the non-coding genome serve important gene-regulatory functions impacting when, where, and to what levels genes and their protein products are expressed. Without an amino acid-like code to decipher non-coding regulatory elements within the genome, significant technology development has aided in their discovery. Currently, genome-wide identification of non-coding regulatory elements is an active area of research with significant progress made in humans, mice, and other model organisms. However, work to address the roles of these elements in mosquito disease vectors is in its infancy. In this article, we review existing methodology to generate genome-wide catalogs for three classes of non-coding elements and discuss their use in mosquito disease vectors and other insects.

          Abstract

          The portion of the mosquito genome that does not code for proteins contains regulatory elements that likely underlie variation for important phenotypes including resistance and susceptibility to infection with arboviruses and Apicomplexan parasites. Filtering the non-coding genome to uncover these functional elements is an expanding area of research, though identification of non-coding regulatory elements is challenging due to the lack of an amino acid-like code for the non-coding genome and a lack of sequence conservation across species. This review focuses on three types of non-coding regulatory elements: (1) microRNAs (miRNAs), (2) long non-coding RNAs (lncRNAs), and (3) enhancers, and summarizes current advances in technical and analytical approaches for measurement of each of these elements on a genome-wide scale. The review also summarizes and highlights novel findings following application of these techniques in mosquito-borne disease research. Looking beyond the protein-coding genome is essential for understanding the complexities that underlie differential gene expression in response to arboviral or parasite infection in mosquito disease vectors. A comprehensive understanding of the regulation of gene and protein expression will inform transgenic and other vector control methods rooted in naturally segregating genetic variation.

          Related collections

          Most cited references147

          • Record: found
          • Abstract: found
          • Article: not found

          MicroRNAs: genomics, biogenesis, mechanism, and function.

          MicroRNAs (miRNAs) are endogenous approximately 22 nt RNAs that can play important regulatory roles in animals and plants by targeting mRNAs for cleavage or translational repression. Although they escaped notice until relatively recently, miRNAs comprise one of the more abundant classes of gene regulatory molecules in multicellular organisms and likely influence the output of many protein-coding genes.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Transcript assembly and abundance estimation from RNA-Seq reveals thousands of new transcripts and switching among isoforms

            High-throughput mRNA sequencing (RNA-Seq) holds the promise of simultaneous transcript discovery and abundance estimation 1-3 . We introduce an algorithm for transcript assembly coupled with a statistical model for RNA-Seq experiments that produces estimates of abundances. Our algorithms are implemented in an open source software program called Cufflinks. To test Cufflinks, we sequenced and analyzed more than 430 million paired 75bp RNA-Seq reads from a mouse myoblast cell line representing a differentiation time series. We detected 13,692 known transcripts and 3,724 previously unannotated ones, 62% of which are supported by independent expression data or by homologous genes in other species. Analysis of transcript expression over the time series revealed complete switches in the dominant transcription start site (TSS) or splice-isoform in 330 genes, along with more subtle shifts in a further 1,304 genes. These dynamics suggest substantial regulatory flexibility and complexity in this well-studied model of muscle development.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              MicroRNAs: target recognition and regulatory functions.

              MicroRNAs (miRNAs) are endogenous approximately 23 nt RNAs that play important gene-regulatory roles in animals and plants by pairing to the mRNAs of protein-coding genes to direct their posttranscriptional repression. This review outlines the current understanding of miRNA target recognition in animals and discusses the widespread impact of miRNAs on both the expression and evolution of protein-coding genes.
                Bookmark

                Author and article information

                Contributors
                Role: Academic Editor
                Journal
                Insects
                Insects
                insects
                Insects
                MDPI
                2075-4450
                22 February 2021
                February 2021
                : 12
                : 2
                : 186
                Affiliations
                Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI 53226, USA; efarley@ 123456mcw.edu (E.J.F.); heggleston@ 123456mcw.edu (H.E.)
                Author notes
                [* ]Correspondence: mriehle@ 123456mcw.edu
                Article
                insects-12-00186
                10.3390/insects12020186
                7926655
                9909a3d7-09d3-4e66-ad1b-c951a35e203a
                © 2021 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 31 December 2020
                : 11 February 2021
                Categories
                Review

                mirna,lncrna,enhancer,non-coding,regulatory element
                mirna, lncrna, enhancer, non-coding, regulatory element

                Comments

                Comment on this article