10
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Overexpression of the MDR1 gene is sufficient to confer increased resistance to toxic compounds in Candida albicans.

      Antimicrobial Agents and Chemotherapy
      Candida albicans, drug effects, genetics, Drug Resistance, Fungal, Fluconazole, pharmacology, Genes, MDR, Humans, Promoter Regions, Genetic

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Overexpression of MDR1, which encodes a membrane transport protein of the major facilitator superfamily, is one mechanism by which the human fungal pathogen Candida albicans can develop increased resistance to the antifungal drug fluconazole and other toxic compounds. In clinical C. albicans isolates, constitutive MDR1 overexpression is accompanied by the upregulation of other genes, but it is not known if these additional alterations are required for Mdr1p function and drug resistance. To investigate whether MDR1 overexpression is sufficient to confer a drug-resistant phenotype in C. albicans, we expressed the MDR1 gene from the strong ADH1 promoter in C. albicans laboratory strains that did not express the endogenous MDR1 gene as well as in a fluconazole-resistant clinical C. albicans isolate in which the endogenous MDR1 alleles had been deleted and in a matched fluconazole-susceptible isolate from the same patient. Forced MDR1 overexpression resulted in increased resistance to the putative Mdr1p substrates cerulenin and brefeldin A, and this resistance did not depend on the additional alterations which occurred during drug resistance development in the clinical isolates. In contrast, artificial expression of the MDR1 gene from the ADH1 promoter did not enhance or only slightly enhanced fluconazole resistance, presumably because Mdr1p expression levels in the transformants were considerably lower than those observed in the fluconazole-resistant clinical isolate. These results demonstrate that MDR1 overexpression in C. albicans is sufficient to confer resistance to some toxic compounds that are substrates of this efflux pump but that the degree of resistance depends on the Mdr1p expression level.

          Related collections

          Author and article information

          Journal
          16569853
          1426927
          10.1128/AAC.50.4.1365-1371.2006

          Chemistry
          Candida albicans,drug effects,genetics,Drug Resistance, Fungal,Fluconazole,pharmacology,Genes, MDR,Humans,Promoter Regions, Genetic

          Comments

          Comment on this article