43
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Oxidative Stress in Chagas Disease

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          There is growing evidence to suggest that chagasic myocardia are exposed to sustained oxidative stress induced injuries that may contribute to disease progression. Trypanosoma cruzi invasion- and replication-mediated cellular injuries and immune-mediated cytotoxic reactions are the common source of reactive oxygen species (ROS) during acute infection. Mitochondria are proposed to be the major source of ROS in chronic chagasic hearts. However, it has not been established yet, whether mitochondrial dysfunction is a causative factor in chagasic cardiomyopathy or a consequence of other pathological events. A better understanding of oxidative stress in relation to cardiac tissue damage would be useful in the evaluation of its true role in the pathogenesis of Chagas disease and other heart diseases. In this review, we discuss the evidence for increased oxidative stress in chagasic disease, with emphasis on mitochondrial abnormalities, and its role in sustaining oxidative stress in myocardium.

          Related collections

          Most cited references105

          • Record: found
          • Abstract: not found
          • Article: not found

          Hydroperoxide metabolism in mammalian organs.

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Superoxide radical and superoxide dismutases.

            O2- oxidizes the [4Fe-4S] clusters of dehydratases, such as aconitase, causing-inactivation and release of Fe(II), which may then reduce H2O2 to OH- +OH.. SODs inhibit such HO. production by scavengingO2-, but Cu, ZnSODs, by virtue of a nonspecific peroxidase activity, may peroxidize spin trapping agents and thus give the appearance of catalyzing OH. production from H2O2. There is a glycosylated, tetrameric Cu, ZnSOD in the extracellular space that binds to acidic glycosamino-glycans. It minimizes the reaction of O2- with NO. E. coli, and other gram negative microorganisms, contain a periplasmic Cu, ZnSOD that may serve to protect against extracellular O2-. Mn(III) complexes of multidentate macrocyclic nitrogenous ligands catalyze the dismutation of O2- and are being explored as potential pharmaceutical agents. SOD-null mutants have been prepared to reveal the biological effects of O2-. SodA, sodB E. coli exhibit dioxygen-dependent auxotrophies and enhanced mutagenesis, reflecting O2(-)-sensitive biosynthetic pathways and DNA damage. Yeast, lacking either Cu, ZnSOD or MnSOD, are oxygen intolerant, and the double mutant was hypermutable and defective in sporulation and exhibited requirements for methionine and lysine. A Cu, ZnSOD-null Drosophila exhibited a shortened lifespan.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The cellular production of hydrogen peroxide.

              1. The enzyme-substrate complex of yeast cytochrome c peroxidase is used as a sensitive, specific and accurate spectrophotometric H(2)O(2) indicator. 2. The cytochrome c peroxidase assay is suitable for use with subcellular fractions from tissue homogenates as well as with pure enzyme systems to measure H(2)O(2) generation. 3. Mitochondrial substrates entering the respiratory chain on the substrate side of the antimycin A-sensitive site support the mitochondrial generation of H(2)O(2). Succinate, the most effective substrate, yields H(2)O(2) at a rate of 0.5nmol/min per mg of protein in state 4. H(2)O(2) generation is decreased in the state 4-->state 3 transition. 4. In the combined mitochondrial-peroxisomal fraction of rat liver the changes in the mitochondrial generation of H(2)O(2) modulated by substrate, ADP and antimycin A are followed by parallel changes in the saturation of the intraperoxisomal catalase intermediate. 5. Peroxisomes supplemented with uric acid generate extraperoxisomal H(2)O(2) at a rate (8.6-16.4nmol/min per mg of protein) that corresponds to 42-61% of the rate of uric acid oxidation. Addition of azide increases these H(2)O(2) rates by a factor of 1.4-1.7. 6. The concentration of cytosolic uric acid is shown to vary during the isolation of the cellular fractions. 7. Microsomal fractions produce H(2)O(2) (up to 1.7nmol/min per mg of protein) at a ratio of 0.71-0.86mol of H(2)O(2)/mol of NADP(+) during the oxidation of NADPH. H(2)O(2) is also generated (6-25%) during the microsomal oxidation of NADH (0.06-0.025mol of H(2)O(2)/mol of NAD(+)). 8. Estimation of the rates of production of H(2)O(2) under physiological conditions can be made on the basis of the rates with the isolated fractions. The tentative value of 90nmol of H(2)O(2)/min per g of liver at 22 degrees C serves as a crude approximation to evaluate the biochemical impact of H(2)O(2) on cellular metabolism.
                Bookmark

                Author and article information

                Journal
                Interdiscip Perspect Infect Dis
                IPID
                Interdisciplinary Perspectives on Infectious Diseases
                Hindawi Publishing Corporation
                1687-708X
                1687-7098
                2009
                14 June 2009
                : 2009
                : 190354
                Affiliations
                1Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
                2Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA
                3Sealy Center for Vaccine Development, Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX 77555, USA
                43.142C Medical Research Building, University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555-1070, USA
                Author notes
                *Nisha Jain Garg: nigarg@ 123456utmb.edu

                Recommended by Herbert B. Tanowitz

                Article
                10.1155/2009/190354
                2696642
                19547716
                990e5159-9540-4de4-8536-fa2f3404d740
                Copyright © 2009 Shivali Gupta et al.

                This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 19 March 2009
                : 23 April 2009
                Categories
                Review Article

                Infectious disease & Microbiology
                Infectious disease & Microbiology

                Comments

                Comment on this article