27
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      The 3-hydroxy-3-methylglutaryl coenzyme-A (HMG-CoA) reductases

      , 1 , 2

      Genome Biology

      BioMed Central

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The enzyme 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase catalyzes the conversion of HMG-CoA to mevalonate and is a target for anti-hypercholesterolemic drugs (statins).

          Abstract

          The enzyme 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase catalyzes the conversion of HMG-CoA to mevalonate, a four-electron oxidoreduction that is the rate-limiting step in the synthesis of cholesterol and other isoprenoids. The enzyme is found in eukaryotes and prokaryotes; and phylogenetic analysis has revealed two classes of HMG-CoA reductase, the Class I enzymes of eukaryotes and some archaea and the Class II enzymes of eubacteria and certain other archaea. Three-dimensional structures of the catalytic domain of HMG-CoA reductases from humans and from the bacterium Pseudomonas mevalonii, in conjunction with site-directed mutagenesis studies, have revealed details of the mechanism of catalysis. The reaction catalyzed by human HMG-CoA reductase is a target for anti-hypercholesterolemic drugs (statins), which are intended to lower cholesterol levels in serum. Eukaryotic forms of the enzyme are anchored to the endoplasmic reticulum, whereas the prokaryotic enzymes are soluble. Probably because of its critical role in cellular cholesterol homeostasis, mammalian HMG-CoA reductase is extensively regulated at the transcriptional, translational, and post-translational levels.

          Related collections

          Most cited references 22

          • Record: found
          • Abstract: found
          • Article: not found

          Structural mechanism for statin inhibition of HMG-CoA reductase.

          HMG-CoA (3-hydroxy-3-methylglutaryl-coenzyme A) reductase (HMGR) catalyzes the committed step in cholesterol biosynthesis. Statins are HMGR inhibitors with inhibition constant values in the nanomolar range that effectively lower serum cholesterol levels and are widely prescribed in the treatment of hypercholesterolemia. We have determined structures of the catalytic portion of human HMGR complexed with six different statins. The statins occupy a portion of the binding site of HMG-CoA, thus blocking access of this substrate to the active site. Near the carboxyl terminus of HMGR, several catalytically relevant residues are disordered in the enzyme-statin complexes. If these residues were not flexible, they would sterically hinder statin binding.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Minireview: the AMP-activated protein kinase cascade: the key sensor of cellular energy status.

            All cells must maintain a high ratio of cellular ATP:ADP to survive. Because of the adenylate kinase reaction (2ADP ATP + AMP), AMP rises whenever the ATP:ADP ratio falls, and a high cellular ratio of AMP:ATP is a signal that the energy status of the cell is compromised. The AMP-activated protein kinase (AMPK) is the downstream component of a protein kinase cascade that is switched on by a rise in the AMP:ATP ratio, via a complex mechanism that results in an exquisitely sensitive system. AMPK is switched on by cellular stresses that either interfere with ATP production (e.g. hypoxia, glucose deprivation, or ischemia) or by stresses that increase ATP consumption (e.g. muscle contraction). It is also activated by hormones that act via Gq-coupled receptors, and by leptin and adiponectin, via mechanisms that remain unclear. Once activated, the system switches on catabolic pathways that generate ATP, while switching off ATP-consuming processes that are not essential for short-term cell survival, such as the synthesis of lipids, carbohydrates, and proteins. The AMPK cascade is the probable target for the antidiabetic drug metformin, and current indications are that it is responsible for many of the beneficial effects of exercise in the treatment and prevention of type 2 diabetes and the metabolic syndrome.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Crosstalk between cytosolic and plastidial pathways of isoprenoid biosynthesis in Arabidopsis thaliana.

              In plants, the formation of isopentenyl diphosphate and dimethylallyl diphosphate, the central intermediates in the biosynthesis of isoprenoids, is compartmentalized: the mevalonate (MVA) pathway, which is localized to the cytosol, is responsible for the synthesis of sterols, certain sesquiterpenes, and the side chain of ubiquinone; in contrast, the recently discovered MVA-independent pathway, which operates in plastids, is involved in providing the precursors for monoterpenes, certain sesquiterpenes, diterpenes, carotenoids, and the side chains of chlorophylls and plastoquinone. Specific inhibitors of the MVA pathway (lovastatin) and the MVA-independent pathway (fosmidomycin) were used to perturb biosynthetic flux in Arabidopsis thaliana seedlings. The interaction between both pathways was studied at the transcriptional level by using GeneChip (Affymetrix) microarrays and at the metabolite level by assaying chlorophylls, carotenoids, and sterols. Treatment of seedlings with lovastatin resulted in a transient decrease in sterol levels and a transient increase in carotenoid as well as chlorophyll levels. After the initial drop, sterol amounts in lovastatin-treated seedlings recovered to levels above controls. As a response to fosmidomycin treatment, a transient increase in sterol levels was observed, whereas chlorophyll and carotenoid amounts decreased dramatically when compared with controls. At 96 h after fosmidomycin addition, the levels of all metabolites assayed (sterols, chlorophylls, and carotenoids) were substantially lower than in controls. Interestingly, these inhibitor-mediated changes were not reflected in altered gene expression levels of the genes involved in sterol, chlorophyll, and carotenoid metabolism. The lack of correlation between gene expression patterns and the accumulation of isoprenoid metabolites indicates that posttranscriptional processes may play an important role in regulating flux through isoprenoid metabolic pathways.
                Bookmark

                Author and article information

                Journal
                Genome Biol
                Genome Biology
                BioMed Central (London )
                1465-6906
                1465-6914
                2004
                1 November 2004
                : 5
                : 11
                : 248
                Affiliations
                [1 ]Department of Chemistry, Illinois State University, Normal, IL 61790-4160, USA
                [2 ]Department of Biochemistry, Purdue University, 175 South University Street, West Lafayette, IN 47907-2063, USA
                Article
                gb-2004-5-11-248
                10.1186/gb-2004-5-11-248
                545772
                15535874
                Copyright © 2004 BioMed Central Ltd
                Categories
                Protein Family Review

                Genetics

                Comments

                Comment on this article