33
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      IL-37 inhibits the production of inflammatory cytokines in peripheral blood mononuclear cells of patients with systemic lupus erythematosus: its correlation with disease activity

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Interleukin-37 (IL-37), a new member of IL-1 family cytokine, is recently identified as a natural inhibitor of innate immunity. This study aimed to measure the peripheral blood mononuclear cells (PBMCs) and serum levels of IL-37 in patients with systemic lupus erythematosus (SLE) and to investigate its role in SLE, including its correlation with disease activity, organ disorder and the regulation of inflammatory cytokines.

          Methods

          The expressions of IL-37 mRNAs in PBMCs and serum IL-37 levels in 66 SLE patients were measured by real-time polymerase chain reaction (RT-PCR) and enzyme-linked immunosorbent assay (ELISA). SLE patients PBMCs were stimulated with recombinant IL-37, levels of cytokines TNF-α, IL-1β, IL-6 and IL-10 were detected by RT-PCR and ELISA.

          Results

          IL-37 mRNAs and serum protein levels were higher in patients with SLE compared with healthy controls. Patients with active disease showed higher IL-37 mRNAs and serum protein levels compared with those with inactive disease as well as healthy controls. Serum IL-37 levels correlated with SLEDAI and inversely with C3 and C4. Serum IL-37 levels were higher in SLE patients with renal involvement compared with those without renal disease. In vitro, IL-37 inhibited the production of TNF-α, IL-1β and IL-6 in PBMCs of patients with SLE, whereas the production of IL-10 was unaffected.

          Conclusions

          IL-37 associated with SLE disease activity, especially related with SLE renal disease activity. IL-37 is an important cytokine in the control of SLE pathogenesis by suppressing the production of inflammatory cytokines. Thus, IL-37 may provide a novel research target for the pathogenesis and therapy of SLE.

          Related collections

          Most cited references23

          • Record: found
          • Abstract: not found
          • Article: not found

          Updating the American College of Rheumatology revised criteria for the classification of systemic lupus erythematosus.

          M Hochberg (1997)
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Interleukins, from 1 to 37, and interferon-γ: receptors, functions, and roles in diseases.

            Advancing our understanding of mechanisms of immune regulation in allergy, asthma, autoimmune diseases, tumor development, organ transplantation, and chronic infections could lead to effective and targeted therapies. Subsets of immune and inflammatory cells interact via ILs and IFNs; reciprocal regulation and counter balance among T(h) and regulatory T cells, as well as subsets of B cells, offer opportunities for immune interventions. Here, we review current knowledge about ILs 1 to 37 and IFN-γ. Our understanding of the effects of ILs has greatly increased since the discoveries of monocyte IL (called IL-1) and lymphocyte IL (called IL-2); more than 40 cytokines are now designated as ILs. Studies of transgenic or knockout mice with altered expression of these cytokines or their receptors and analyses of mutations and polymorphisms in human genes that encode these products have provided important information about IL and IFN functions. We discuss their signaling pathways, cellular sources, targets, roles in immune regulation and cellular networks, roles in allergy and asthma, and roles in defense against infections. Copyright © 2011 American Academy of Allergy, Asthma & Immunology. Published by Mosby, Inc. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Interleukin 37 expression protects mice from colitis.

              IL-37, a newly described member of the IL-1 family, functions as a fundamental inhibitor of innate inflammation and immunity. In the present study, we examined a role for IL-37 during experimental colitis. A transgenic mouse strain was generated to express human IL-37 (hIL-37tg), and these mice were subjected to dextran sulfate sodium (DSS)-induced colitis. Despite the presence of a CMV promoter to drive expression of IL-37, mRNA transcripts were not present in colons at the resting state. Expression was observed only upon disruption of the epithelial barrier, with a six- to sevenfold increase (P = 0.02) on days 3 and 5 after continuous exposure to DSS. During the development of colitis, clinical disease scores were reduced by 50% (P < 0.001), and histological indices of colitis were one-third less in hIL-37tg mice compared with WT counterparts (P < 0.001). Reduced inflammation was associated with decreased leukocyte recruitment into the colonic lamina propria. In addition, release of IL-1β and TNFα from ex vivo colonic explant tissue was decreased 5- and 13-fold, respectively, compared with WT (P ≤ 0.005), whereas IL-10 was increased sixfold (P < 0.001). However, IL-10 was not required for the anti-inflammatory effects of IL-37 because IL-10-receptor antibody blockade did not reverse IL-37-mediated protection. Mechanistically, IL-37 originating from hematopoietic cells was sufficient to exert anti-inflammatory effects because WT mice reconstituted with hIL-37tg bone marrow were protected from colitis. Thus, IL-37 emerges as key modulator of intestinal inflammation.
                Bookmark

                Author and article information

                Contributors
                Journal
                J Transl Med
                J Transl Med
                Journal of Translational Medicine
                BioMed Central
                1479-5876
                2014
                16 March 2014
                : 12
                : 69
                Affiliations
                [1 ]Biological therapy institute, Shenzhen University School of Medicine, 518060 Shenzhen, China
                [2 ]Department of Pathogen Biology and Immunology, Shenzhen University School of Medicine, 518060 Shenzhen, China
                [3 ]Shenzhen City Shenzhen University Immunodiagnostic Technology Platforms, 518060 Shenzhen, China
                [4 ]Department of laboratory medicine, Peking University Shenzhen Hospital, 518036 Shenzhen, China
                [5 ]Department of Preventive Medicine, Shenzhen University School of Medicine, 518060 Shenzhen, China
                Article
                1479-5876-12-69
                10.1186/1479-5876-12-69
                4003851
                24629023
                994d7c0b-1d13-4157-85a8-31b85393db71
                Copyright © 2014 Ye et al.; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

                History
                : 19 October 2013
                : 12 March 2014
                Categories
                Research

                Medicine
                interleukin-37,systemic lupus erythematosus,autoimmunity,cytokines,peripheral blood mononuclear cell

                Comments

                Comment on this article