9
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Higher-order accurate two-sample network inference and network hashing

      Preprint
      , , , ,

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Two-sample hypothesis testing for comparing two networks is an important yet difficult problem. Major challenges include: potentially different sizes and sparsity levels; non-repeated observations of adjacency matrices; computational scalability; and theoretical investigations, especially on finite-sample accuracy and minimax optimality. In this article, we propose the first provably higher-order accurate two-sample inference method by comparing network moments. Our method extends the classical two-sample t-test to the network setting. We make weak modeling assumptions and can effectively handle networks of different sizes and sparsity levels. We establish strong finite-sample theoretical guarantees, including rate-optimality properties. Our method is easy to implement and computes fast. We also devise a novel nonparametric framework of offline hashing and fast querying particularly effective for maintaining and querying very large network databases. We demonstrate the effectiveness of our method by comprehensive simulations. We apply our method to two real-world data sets and discover interesting novel structures.

          Related collections

          Author and article information

          Journal
          16 August 2022
          Article
          2208.07573
          9951a342-c787-40ee-b99c-1c52887b55cc

          http://creativecommons.org/licenses/by/4.0/

          History
          Custom metadata
          stat.ME math.ST stat.ML stat.TH

          Machine learning,Methodology,Statistics theory
          Machine learning, Methodology, Statistics theory

          Comments

          Comment on this article