77
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      A Novel Multiple Objective Optimization Framework for Constraining Conductance-Based Neuron Models by Experimental Data

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          We present a novel framework for automatically constraining parameters of compartmental models of neurons, given a large set of experimentally measured responses of these neurons. In experiments, intrinsic noise gives rise to a large variability (e.g., in firing pattern) in the voltage responses to repetitions of the exact same input. Thus, the common approach of fitting models by attempting to perfectly replicate, point by point, a single chosen trace out of the spectrum of variable responses does not seem to do justice to the data. In addition, finding a single error function that faithfully characterizes the distance between two spiking traces is not a trivial pursuit. To address these issues, one can adopt a multiple objective optimization approach that allows the use of several error functions jointly. When more than one error function is available, the comparison between experimental voltage traces and model response can be performed on the basis of individual features of interest (e.g., spike rate, spike width). Each feature can be compared between model and experimental mean, in units of its experimental variability, thereby incorporating into the fitting this variability. We demonstrate the success of this approach, when used in conjunction with genetic algorithm optimization, in generating an excellent fit between model behavior and the firing pattern of two distinct electrical classes of cortical interneurons, accommodating and fast-spiking. We argue that the multiple, diverse models generated by this method could serve as the building blocks for the realistic simulation of large neuronal networks.

          Related collections

          Most cited references55

          • Record: found
          • Abstract: found
          • Article: not found

          Interneurons of the neocortical inhibitory system.

          Mammals adapt to a rapidly changing world because of the sophisticated cognitive functions that are supported by the neocortex. The neocortex, which forms almost 80% of the human brain, seems to have arisen from repeated duplication of a stereotypical microcircuit template with subtle specializations for different brain regions and species. The quest to unravel the blueprint of this template started more than a century ago and has revealed an immensely intricate design. The largest obstacle is the daunting variety of inhibitory interneurons that are found in the circuit. This review focuses on the organizing principles that govern the diversity of inhibitory interneurons and their circuits.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Variability, compensation and homeostasis in neuron and network function.

            Neurons in most animals live a very long time relative to the half-lives of all of the proteins that govern excitability and synaptic transmission. Consequently, homeostatic mechanisms are necessary to ensure stable neuronal and network function over an animal's lifetime. To understand how these homeostatic mechanisms might function, it is crucial to understand how tightly regulated synaptic and intrinsic properties must be for adequate network performance, and the extent to which compensatory mechanisms allow for multiple solutions to the production of similar behaviour. Here, we use examples from theoretical and experimental studies of invertebrates and vertebrates to explore several issues relevant to understanding the precision of tuning of synaptic and intrinsic currents for the operation of functional neuronal circuits.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Similar network activity from disparate circuit parameters.

              It is often assumed that cellular and synaptic properties need to be regulated to specific values to allow a neuronal network to function properly. To determine how tightly neuronal properties and synaptic strengths need to be tuned to produce a given network output, we simulated more than 20 million versions of a three-cell model of the pyloric network of the crustacean stomatogastric ganglion using different combinations of synapse strengths and neuron properties. We found that virtually indistinguishable network activity can arise from widely disparate sets of underlying mechanisms, suggesting that there could be considerable animal-to-animal variability in many of the parameters that control network activity, and that many different combinations of synaptic strengths and intrinsic membrane properties can be consistent with appropriate network performance.
                Bookmark

                Author and article information

                Journal
                Front Neurosci
                Front. Neurosci.
                Frontiers in Neuroscience
                Frontiers Research Foundation
                1662-4548
                1662-453X
                01 September 2007
                15 October 2007
                November 2007
                : 1
                : 1
                : 7-18
                Affiliations
                [1] 1Interdisciplinary Center for Neural Computation and Institute of Life Sciences, Hebrew University of Jerusalem Israel
                [2] 2Institute of Life Sciences, Hebrew University of Jerusalem Israel
                [3] 3Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL) Switzerland
                Author notes

                Review Editors: Eve Marder, Volen Center for Complex Systems, Brandeis University, USA; Astrid Prinz, Department of Biology, Emory University, USA

                *Correspondence: Shaul Druckmann, Interdisciplinary Center for Neural Computation and Department of Neurobiology, Institute of Life Sciences, the Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem 91904, Israel. e-mail: drucks@ 123456lobster.ls.huji.ac.il
                Article
                10.3389/neuro.01.1.1.001.2007
                2570085
                18982116
                996ff7d4-639d-4b10-889d-e02fec5f7817
                Copyright: © 2007 Druckmann, Banitt, Gidon, Schürmann, Markram and Segev.

                This is an open-access article subject to an exclusive license agreement between the authors and the Frontiers Research Foundation, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are credited.

                History
                : 15 August 2007
                : 01 September 2007
                Page count
                Figures: 7, Tables: 3, Equations: 3, References: 53, Pages: 12, Words: 10870
                Categories
                Neuroscience
                Original Research

                Neurosciences
                firing pattern,multi-objective optimization,cortical interneurons,compartmental model,noisy neurons

                Comments

                Comment on this article