4
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      A spider fossil from the Jurassic Talbragar Fossil Fish Bed of New South Wales

      ,
      Alcheringa: An Australasian Journal of Palaeontology
      Informa UK Limited

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references15

          • Record: found
          • Abstract: found
          • Article: not found

          Reconstructing web evolution and spider diversification in the molecular era.

          The evolutionary diversification of spiders is attributed to spectacular innovations in silk. Spiders are unique in synthesizing many different kinds of silk, and using silk for a variety of ecological functions throughout their lives, particularly to make prey-catching webs. Here, we construct a broad higher-level phylogeny of spiders combining molecular data with traditional morphological and behavioral characters. We use this phylogeny to test the hypothesis that the spider orb web evolved only once. We then examine spider diversification in relation to different web architectures and silk use. We find strong support for a single origin of orb webs, implying a major shift in the spinning of capture silk and repeated loss or transformation of orb webs. We show that abandonment of costly cribellate capture silk correlates with the 2 major diversification events in spiders (1). Replacement of cribellate silk by aqueous silk glue may explain the greater diversity of modern orb-weaving spiders (Araneoidea) compared with cribellate orb-weaving spiders (Deinopoidea) (2). Within the "RTA clade," which is the sister group to orb-weaving spiders and contains half of all spider diversity, >90% of species richness is associated with repeated loss of cribellate silk and abandonment of prey capture webs. Accompanying cribellum loss in both groups is a release from substrate-constrained webs, whether by aerially suspended webs, or by abandoning webs altogether. These behavioral shifts in silk and web production by spiders thus likely played a key role in the dramatic evolutionary success and ecological dominance of spiders as predators of insects.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Tangled in a sparse spider web: single origin of orb weavers and their spinning work unravelled by denser taxonomic sampling.

            In order to study the tempo and the mode of spider orb web evolution and diversification, we conducted a phylogenetic analysis using six genetic markers along with a comprehensive taxon sample. The present analyses are the first to recover the monophyly of orb-weaving spiders based solely on DNA sequence data and an extensive taxon sample. We present the first dated orb weaver phylogeny. Our results suggest that orb weavers appeared by the Middle Triassic and underwent a rapid diversification during the end of the Triassic and Early Jurassic. By the second half of the Jurassic, most of the extant orb-weaving families and web designs were already present. The processes that may have given origin to this diversification of lineages and web architectures are discussed. A combination of biotic factors, such as key innovations in web design and silk composition, as well as abiotic environmental changes, may have played important roles in the diversification of orb weavers. Our analyses also show that increased taxon sampling density in both ingroups and outgroups greatly improves phylogenetic accuracy even when extensive data are missing. This effect is particularly important when addition of character data improves gene overlap.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Fossil spiders.

              Over the last three decades, the fossil record of spiders has increased from being previously biased towards Tertiary ambers and a few dubious earlier records, to one which reveals a much greater diversity in the Mesozoic, with many of the modern families present in that era, and with clearer evidence of the evolutionary history of the group. We here record the history of palaeoarachnology and the major breakthroughs which form the basis of studies on fossil spiders. Understanding the preservation and taphonomic history of spider fossils is crucial to interpretation of fossil spider morphology. We also review the more recent descriptions of fossil spiders and the effect these discoveries have had on the phylogenetic tree of spiders. We discuss some features of the evolutionary history of spiders and present ideas for future work.
                Bookmark

                Author and article information

                Journal
                Alcheringa: An Australasian Journal of Palaeontology
                Alcheringa: An Australasian Journal of Palaeontology
                Informa UK Limited
                0311-5518
                1752-0754
                June 2013
                June 2013
                : 37
                : 2
                : 203-208
                Article
                10.1080/03115518.2013.735072
                998c9067-acac-44dd-b322-dbdfc05f69f1
                © 2013
                History

                Comments

                Comment on this article