4
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Street Dust Heavy Metal Pollution Source Apportionment and Sustainable Management in A Typical City—Shijiazhuang, China

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Street dust is repeatedly raised by the wind as a secondary suspension, helping heavy metals therein to enter the human body through the respiratory system, harming human health. A detailed investigation was conducted to determine levels and sources of Cd (cadmium), Cr (chromium), Cu (copper), Pb (lead), Zn (zinc), Ni (nick), and Hg (mercury) contamination in street dust from Shijiazhuang, China. The average concentrations of these metals were: Cd, 1.86 mg·kg −1; Cr, 131.7 mg·kg −1; Ni, 40.99 mg·kg −1; Cu, 91.06 mg·kg −1; Pb, 154.78 mg·kg −1, Hg, 0.29 mg·kg −1; and Zn, 496.17 mg·kg −1—all of which were greater than the local soil reference values. The concentrations of the heavy metals were mapped for the three Shijiazhuang ring roads, with the results showing significant differences between each ring. Application of enrichment factors and geoaccumulation indexes showed that there was significant enrichment and accumulation of Cd, Pb, Zn, and Hg. Multivariate statistical analyses showed that Cd, Pb, Zn, and Hg levels were mainly controlled by human activities, while Cr, Ni, and Cu levels were associated with natural sources. Absolute principal component scores with multiple linear regression (APCS-MLR) were applied to facilitate source apportionment. The results showed that the mixed (traffic and industry) group contributed 53.55%, 59.7%, and 62.25% of the Cd, Pb, and Zn concentration, respectively, while the natural sources group contributed 58.01%, 65.09%, and 66.91% of the Cu, Ni, and Cr concentration, respectively. The burning coal group was found to be responsible for 63.38% of the Hg present in the samples. These results provide a useful theoretical basis for Shijiazhuang authorities to address heavy metal pollution management.

          Related collections

          Most cited references42

          • Record: found
          • Abstract: found
          • Article: not found

          Multivariate statistical analysis of heavy metals in street dust of Baoji, NW China.

          The concentrations of Pb, Cu, Zn, Mn, Ni, Co and Cr in street dust samples from Baoji in north-west China were measured by wavelength dispersive X-ray fluorescence spectrometry, while As and Hg in street dust samples were determined by atomic fluorescence spectrometry. Principal component analysis and cluster analysis, coupled with correlation coefficient analysis, were used to analyze the data and to identify possible sources of these heavy metals. The results indicate that street dust in Baoji has elevated heavy metal concentrations, especially Hg, Pb, Zn and Cu, which are 16-77, 7-92, 6-26 and 4-12 times the background levels in Shaanxi soil, respectively. The mean heavy metal concentrations in street dust divided by the corresponding background values of Shaanxi soil decrease in the order of Hg>Pb>Zn>Cu>Cr>As>Ni>Co>Mn>V. Three main sources of these heavy metals were identified. As, V, Pb and Co originated from nature and traffic. Cu, Zn, Hg and Mn, especially the former two, mainly derive from industry sources, as well as traffic. Cr and Ni mainly originate from soil.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Determining contamination level of heavy metals in road dust from busy traffic areas with different characteristics.

            This study identified the levels and sources of heavy metal contamination in road dust from busy traffic areas in a typical industrial city in Korea. This study compared the total concentrations, as determined by aqua regia digestions and atomic absorption spectroscopy, of cadmium (Cd), copper (Cu), lead (Pb), zinc (Zn) and nickel (Ni) in the road dust from areas with different characteristics such as traffic rotaries, downtown areas, circulation roads, and asphalt and concrete highways. The contamination levels of the heavy metals in the road dust were evaluated using the contamination factor and the degree of contamination. The contamination levels of the heavy metals in the road dust were highly dependent on traffic volume and atmospheric dispersion from traffic rotaries. Industrial emissions and the frequency of brake use and vehicles coming to a complete stop were additional factors that affected the contamination levels in downtown areas. The concrete highway had higher contamination levels of the heavy metals than the asphalt highway. Vehicle speed was also a strong contributing factor to the degree of contamination of heavy metals in the road dust from the circulation roads and highways.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Pollution characteristics and health risk assessment of heavy metals in street dusts from different functional areas in Beijing, China.

              Street dusts from Heavy Density Traffic Area, Residential Area, Educational Area and Tourism Area in Beijing, China, were collected to study the distribution, accumulation and health risk assessment of heavy metals. Cr, Cu, Zn, Cd and Pb concentrations were in higher concentrations in these four locations than in the local soil background. In comparison with the concentrations of selected metals in other cities, the concentrations of heavy metals in Beijing were generally at moderate or low levels. Ni, Cu, Zn and Pb concentrations in the Tourism Area were the highest among four different areas in Beijing. A pollution assessment by Geoaccumulation Index showed that the pollution level for the heavy metals is in the following order: Cd>Pb>Zn>Cu>Cr>Ni. The Cd levels can be considered "heavily contaminated" status. The health risk assessment model that was employed to calculate human exposure indicated that both non-carcinogenic and carcinogenic risks of selected metals in street dusts were generally in the low range, except for the carcinogenic risk from Cr for children.
                Bookmark

                Author and article information

                Journal
                Int J Environ Res Public Health
                Int J Environ Res Public Health
                ijerph
                International Journal of Environmental Research and Public Health
                MDPI
                1661-7827
                1660-4601
                23 July 2019
                July 2019
                : 16
                : 14
                : 2625
                Affiliations
                [1 ]Institute of Geological Survey, Hebei GEO University, Shijiazhuang 050031, China
                [2 ]College of Business Administration, Wonkwang University, 460 Iksandae-ro, Iksan, Jeonbuk 54538, Korea
                Author notes
                [* ]Correspondence: lichang1454@ 123456gmail.com ; Tel.: +8615097397052
                Article
                ijerph-16-02625
                10.3390/ijerph16142625
                6678876
                31340519
                99912499-3755-43bf-84c2-00384a617487
                © 2019 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 01 July 2019
                : 21 July 2019
                Categories
                Article

                Public health
                heavy metals,source,apcs-mlr,street dust,shijiazhuang,management
                Public health
                heavy metals, source, apcs-mlr, street dust, shijiazhuang, management

                Comments

                Comment on this article