49
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Molecular characterization of cryptic and sympatric lymnaeid species from the Galba/Fossaria group in Mendoza Province, Northern Patagonia, Argentina

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Freshwater lymnaeid snails can act as the intermediate hosts for trematode parasites such as the liver fluke Fasciola hepatica, that cause significant economic and biomedical burden worldwide, particularly through bovine fascioliasis. Transmission potential is tightly coupled to local compatibility with snail hosts, so accurate identification of lymnaeid species is crucial for understanding disease risk, especially when invasive species are encountered. Mendoza Province, in Argentina, is a center of livestock production and also an area of endemic fascioliasis transmission. However, the distribution of lymnaeid species in the region is not well known.

          Methods

          This study examined lymnaeid snails from seven localities in the Department of Malarguë, Mendoza Province, using morphological and molecular analyses and also describing ecological variables associated with snail presence.

          Results

          While morphological characters identified two species of lymnaeid, Galba truncatula and G. viatrix, molecular data revealed a third, cryptic species, G. neotropica, which was sympatric with G. viatrix. G. truncatula was exclusively found in high altitude (>1900 meters above sea level [masl]) sites, whereas mixed G. neotropica/G. viatrix localities were at middle elevations (1300–1900 masl), and G. viatrix was found alone at the lowest altitude sites (<1300 masl). Phylogenetic analysis using two mitochondrial markers revealed G. neotropica and G. viatrix to be closely related, and given their morphological similarities, their validities as separate taxonomic entities should be questioned.

          Conclusions

          This study highlights the need of a robust taxonomic framework for the identification of lymnaeid snails, incorporating molecular, morphological and ecological variables while avoiding nomenclature redundancy. As the three species observed here, including one alien invasive species, are considered hosts of varying susceptibility to Fasciola parasites, and given the economic importance of fascioliasis for livestock production, this research has critical importance for the ultimate aim of controlling disease transmission.

          Related collections

          Most cited references39

          • Record: found
          • Abstract: found
          • Article: not found

          Fascioliasis and other plant-borne trematode zoonoses.

          Fascioliasis and other food-borne trematodiases are included in the list of important helminthiases with a great impact on human development. Six plant-borne trematode species have been found to affect humans: Fasciola hepatica, Fasciola gigantica and Fasciolopsis buski (Fasciolidae), Gastrodiscoides hominis (Gastrodiscidae), Watsonius watsoni and Fischoederius elongatus (Paramphistomidae). Whereas F. hepatica and F. gigantica are hepatic, the other four species are intestinal parasites. The fasciolids and the gastrodiscid cause important zoonoses distributed throughout many countries, while W. watsoni and F. elongatus have been only accidentally detected in humans. Present climate and global changes appear to increasingly affect snail-borne helminthiases, which are strongly dependent on environmental factors. Fascioliasis is a good example of an emerging/re-emerging parasitic disease in many countries as a consequence of many phenomena related to environmental changes as well as man-made modifications. The ability of F. hepatica to spread is related to its capacity to colonise and adapt to new hosts and environments, even at the extreme inhospitality of very high altitude. Moreover, the spread of F. hepatica from its original European range to other continents is related to the geographic expansion of its original European lymnaeid intermediate host species Galba truncatula, the American species Pseudosuccinea columella, and its adaptation to other lymnaeid species authochthonous in the newly colonised areas. Although fasciolopsiasis and gastrodiscoidiasis can be controlled along with other food-borne parasitoses, fasciolopsiasis still remains a public health problem in many endemic areas despite sustained WHO control programmes. Fasciolopsiasis has become a re-emerging infection in recent years and gastrodiscoidiasis, initially supposed to be restricted to Asian countries, is now being reported in African countries.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Edge Effects and Conservation of Biotic Diversity

              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Bridging gaps in the molecular phylogeny of the Lymnaeidae (Gastropoda: Pulmonata), vectors of Fascioliasis

              Background Lymnaeidae snails play a prominent role in the transmission of helminths, mainly trematodes of medical and veterinary importance (e.g., Fasciola liver flukes). As this family exhibits a great diversity in shell morphology but extremely homogeneous anatomical traits, the systematics of Lymnaeidae has long been controversial. Using the most complete dataset to date, we examined phylogenetic relationships among 50 taxa of this family using a supermatrix approach (concatenation of the 16 S, ITS-1 and ITS-2 genes, representing 5054 base pairs) involving both Maximum Likelihood and Bayesian Inference. Results Our phylogenetic analysis demonstrates the existence of three deep clades of Lymnaeidae representing the main geographic origin of species (America, Eurasia and the Indo-Pacific region). This phylogeny allowed us to discuss on potential biological invasions and map important characters, such as, the susceptibility to infection by Fasciola hepatica and F. gigantica, and the haploid number of chromosomes (n). We found that intermediate hosts of F. gigantica cluster within one deep clade, while intermediate hosts of F. hepatica are widely spread across the phylogeny. In addition, chromosome number seems to have evolved from n = 18 to n = 17 and n = 16. Conclusion Our study contributes to deepen our understanding of Lymnaeidae phylogeny by both sampling at worldwide scale and combining information from various genes (supermatrix approach). This phylogeny provides insights into the evolutionary relationships among genera and species and demonstrates that the nomenclature of most genera in the Lymnaeidae does not reflect evolutionary relationships. This study highlights the importance of performing basic studies in systematics to guide epidemiological control programs.
                Bookmark

                Author and article information

                Journal
                Parasit Vectors
                Parasit Vectors
                Parasites & Vectors
                BioMed Central
                1756-3305
                2013
                23 October 2013
                : 6
                : 304
                Affiliations
                [1 ]Ecology & Evolutionary Biology, Princeton University, Princeton, NJ 08544, USA
                [2 ]Unidad de Ecología de Reservorios y Vectores de Parásitos, Departamento de Ecología, Genética y Evolución, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, 4 piso, Laboratorio 55, Ciudad Autónoma de Buenos Aires, C1428EGA, Argentina
                [3 ]Consejo Nacional de Investigaciones Científicas y Técnicas, Av. Rivadavia 1917, Ciudad Autónoma de Buenos Aires 1033, Argentina
                [4 ]Department of Parasitology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK
                Article
                1756-3305-6-304
                10.1186/1756-3305-6-304
                3816585
                23281838
                9996b8ac-d178-4a37-bdf4-00f612620da0
                Copyright ©2013 Standley et al.; licensee BioMed Central Ltd.

                This is an open access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 25 June 2013
                : 24 September 2013
                Categories
                Research

                Parasitology
                population genetics,taxonomy,freshwater lymnaeid snails,galba,fascioliasis,northern patagonia,argentina

                Comments

                Comment on this article