11
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The Involvement of Lysosomes in Myocardial Aging and Disease

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The myocardium is mainly composed of long-lived postmitotic cells with, if there is any at all, a very low rate of replacement through the division and differentiation of stem cells. As a consequence, cardiac myocytes gradually undergo pronounced age-related alterations which, furthermore, occur at a rate that inversely correlates with the longevity of species. Basically, these alterations represent the accumulation of structures that have been damaged by oxidation and that are useless and often harmful. These structures (so-called ‘waste’ materials), include defective mitochondria, aberrant cytosolic proteins, often in aggregated form, and lipofuscin, which is an intralysosomal undegradable polymeric substance. The accumulation of ‘waste’ reflects the insufficient capacity for autophagy of the lysosomal compartment, as well as the less than perfect functioning of proteasomes, calpains and other cellular digestive systems. Senescent mitochondria are usually enlarged, show reduced potential over their inner membrane, are deficient in ATP production, and often produce increased amounts of reactive oxygen species. The turnover of damaged cellular structures is hindered by an increased lipofuscin loading of the lysosomal compartment. This particularly restricts the autophagic turnover of enlarged, defective mitochondria, by diverting the flow of lysosomal hydrolases from autophagic vacuoles to lipofuscin-loaded lysosomes where the enzymes are lost, since lipofuscin is not degradable by lysosomal hydrolases. As a consequence, aged lipofuscin-rich cardiac myocytes become overloaded with damaged mitochondria, leading to increased oxidative stress, apoptotic cell death, and the gradual development of heart failure. Defective lysosomal function also underlies myocardial degeneration in various lysosomal storage diseases, while other forms of cardiomyopathies develop due to mitochondrial DNA mutations, resulting in an accumulation of abnormal mitochondria that are not properly eliminated by autophagy. The degradation of iron-saturated ferritin in lysosomes mediates myocardial injury in hemochromatosis, an acquired or hereditary disease associated with iron overload. Lysosomes then become sensitized to oxidative stress by the overload of low mass, redox-active iron that accumulates when iron-saturated ferritin is degraded following autophagy. Lysosomal destabilization is of importance in the induction and/or execution of programmed cell death (either classical apoptotic or autophagic), which is a common manifestation of myocardial aging and a variety of cardiac pathologies.

          Related collections

          Most cited references89

          • Record: found
          • Abstract: found
          • Article: not found

          LC3 conjugation system in mammalian autophagy

          Autophagy is the bulk degradation of proteins and organelles, a process essential for cellular maintenance, cell viability, differentiation and development in mammals. Autophagy has significant associations with neurodegenerative diseases, cardiomyopathies, cancer, programmed cell death, and bacterial and viral infections. During autophagy, a cup-shaped structure, the preautophagosome, engulfs cytosolic components, including organelles, and closes, forming an autophagosome, which subsequently fuses with a lysosome, leading to the proteolytic degradation of internal components of the autophagosome by lysosomal lytic enzymes. During the formation of mammalian autophagosomes, two ubiquitylation-like modifications are required, Atg12-conjugation and LC3-modification. LC3 is an autophagosomal ortholog of yeast Atg8. A lipidated form of LC3, LC3-II, has been shown to be an autophagosomal marker in mammals, and has been used to study autophagy in neurodegenerative and neuromuscular diseases, tumorigenesis, and bacterial and viral infections. The other Atg8 homologues, GABARAP and GATE-16, are also modified by the same mechanism. In non-starved rats, the tissue distribution of LC3-II differs from those of the lipidated forms of GABARAP and GATE-16, GABARAP-II and GATE-16-II, suggesting that there is a functional divergence among these three modified proteins. Delipidation of LC3-II and GABARAP-II is mediated by hAtg4B. We review the molecular mechanism of LC3-modification, the crosstalk between LC3-modification and mammalian Atg12-conjugation, and the cycle of LC3-lipidation and delipidation mediated by hAtg4B, as well as recent findings concerning the other two Atg8 homologues, GABARAP and GATE-16. We also highlight recent findings regarding the pathobiology of LC3-modification, including its role in microbial infection, cancer and neuromuscular diseases.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            A unified nomenclature for yeast autophagy-related genes.

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Death by design: apoptosis, necrosis and autophagy.

              Apoptosis is the principal mechanism by which cells are physiologically eliminated in metazoan organisms. During apoptotic death, cells are neatly carved up by caspases and packaged into apoptotic bodies as a mechanism to avoid immune activation. Recently, necrosis, once thought of as simply a passive, unorganized way to die, has emerged as an alternate form of programmed cell death whose activation might have important biological consequences, including the induction of an inflammatory response. Autophagy has also been suggested as a possible mechanism for non-apoptotic death despite evidence from many species that autophagy represents a survival strategy in times of stress. Recent advances have helped to define the function of and mechanism for programmed necrosis and the role of autophagy in cell survival and suicide.
                Bookmark

                Author and article information

                Journal
                Curr Cardiol Rev
                CCR
                Current Cardiology Reviews
                Bentham Science Publishers Ltd.
                1573-403X
                1875-6557
                May 2008
                : 4
                : 2
                : 107-115
                Affiliations
                [1 ]Division of Geriatric Medicine, Faculty of Health Sciences, Linköping University, 58185 Linköping, Sweden
                [2 ]Laboratory of Clinical Pathology and Cytology, Karolinska University Hospital, 17178 Stockholm, Sweden
                [3 ]Division of Pharmacology, Faculty of Health Sciences, Linköping University, 58185 Linköping, Sweden
                [4 ]Department of Pathology and Cytology, University Hospital, 58185 Linköping, Sweden
                Author notes
                [* ]Address correspondence to this author at the Division of Geriatric Medicine, Faculty of Health Sciences, Linköping University, 58185 Linköping, Sweden; E-mail: acete@ 123456inr.eiu.se
                Article
                CCR-4-107
                10.2174/157340308784245801
                2779350
                19936285
                999ae15c-e9b8-40dc-86df-2133bc6ca6b7
                ©2008 Bentham Science Publishers Ltd.

                This is an open access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.5/), which permits unrestrictive use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 3 January 2008
                : 4 March 2008
                : 12 March 2008
                Categories
                Article

                Cardiovascular Medicine
                apoptosis,mitochondria,cardiac myocytes,oxidative stress.,autophagy,aging
                Cardiovascular Medicine
                apoptosis, mitochondria, cardiac myocytes, oxidative stress., autophagy, aging

                Comments

                Comment on this article