63
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Chromatin replication and epigenome maintenance

      ,
      Nature Reviews Molecular Cell Biology
      Springer Science and Business Media LLC

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Stability and function of eukaryotic genomes are closely linked to chromatin structure and organization. During cell division the entire genome must be accurately replicated and the chromatin landscape reproduced on new DNA. Chromatin and nuclear structure influence where and when DNA replication initiates, whereas the replication process itself disrupts chromatin and challenges established patterns of genome regulation. Specialized replication-coupled mechanisms assemble new DNA into chromatin, but epigenome maintenance is a continuous process taking place throughout the cell cycle. If DNA synthesis is perturbed, cells can suffer loss of both genome and epigenome integrity with severe consequences for the organism.

          Related collections

          Most cited references174

          • Record: found
          • Abstract: found
          • Article: not found

          Epigenetics in cancer.

          Epigenetic mechanisms are essential for normal development and maintenance of tissue-specific gene expression patterns in mammals. Disruption of epigenetic processes can lead to altered gene function and malignant cellular transformation. Global changes in the epigenetic landscape are a hallmark of cancer. The initiation and progression of cancer, traditionally seen as a genetic disease, is now realized to involve epigenetic abnormalities along with genetic alterations. Recent advancements in the rapidly evolving field of cancer epigenetics have shown extensive reprogramming of every component of the epigenetic machinery in cancer including DNA methylation, histone modifications, nucleosome positioning and non-coding RNAs, specifically microRNA expression. The reversible nature of epigenetic aberrations has led to the emergence of the promising field of epigenetic therapy, which is already making progress with the recent FDA approval of three epigenetic drugs for cancer treatment. In this review, we discuss the current understanding of alterations in the epigenetic landscape that occur in cancer compared with normal cells, the roles of these changes in cancer initiation and progression, including the cancer stem cell model, and the potential use of this knowledge in designing more effective treatment strategies.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Loss of acetylation at Lys16 and trimethylation at Lys20 of histone H4 is a common hallmark of human cancer.

            CpG island hypermethylation and global genomic hypomethylation are common epigenetic features of cancer cells. Less attention has been focused on histone modifications in cancer cells. We characterized post-translational modifications to histone H4 in a comprehensive panel of normal tissues, cancer cell lines and primary tumors. Using immunodetection, high-performance capillary electrophoresis and mass spectrometry, we found that cancer cells had a loss of monoacetylated and trimethylated forms of histone H4. These changes appeared early and accumulated during the tumorigenic process, as we showed in a mouse model of multistage skin carcinogenesis. The losses occurred predominantly at the acetylated Lys16 and trimethylated Lys20 residues of histone H4 and were associated with the hypomethylation of DNA repetitive sequences, a well-known characteristic of cancer cells. Our data suggest that the global loss of monoacetylation and trimethylation of histone H4 is a common hallmark of human tumor cells.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Induction of tumors in mice by genomic hypomethylation.

              Genome-wide DNA hypomethylation occurs in many human cancers, but whether this epigenetic change is a cause or consequence of tumorigenesis has been unclear. To explore this phenomenon, we generated mice carrying a hypomorphic DNA methyltransferase 1 (Dnmt1) allele, which reduces Dnmt1 expression to 10% of wild-type levels and results in substantial genome-wide hypomethylation in all tissues. The mutant mice were runted at birth, and at 4 to 8 months of age they developed aggressive T cell lymphomas that displayed a high frequency of chromosome 15 trisomy. These results indicate that DNA hypomethylation plays a causal role in tumor formation, possibly by promoting chromosomal instability.
                Bookmark

                Author and article information

                Journal
                Nature Reviews Molecular Cell Biology
                Nat Rev Mol Cell Biol
                Springer Science and Business Media LLC
                1471-0072
                1471-0080
                March 2012
                February 23 2012
                March 2012
                : 13
                : 3
                : 153-167
                Article
                10.1038/nrm3288
                22358331
                99a2d16d-8a16-4d07-858b-6aacc4e97231
                © 2012

                http://www.springer.com/tdm

                History

                Comments

                Comment on this article