+1 Recommend
0 collections
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Molecular Surveillance of Cryptosporidium spp., Giardia duodenalis, and Enterocytozoon bieneusi by Genotyping and Subtyping Parasites in Wastewater

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.



          Despite their wide occurrence, cryptosporidiosis and giardiasis are considered neglected diseases by the World Health Organization. The epidemiology of these diseases and microsporidiosis in humans in developing countries is poorly understood. The high concentration of pathogens in raw sewage makes the characterization of the transmission of these pathogens simple through the genotype and subtype analysis of a small number of samples.

          Methodology/Principal Findings

          The distribution of genotypes and subtypes of Cryptosporidium spp., Giardia duodenalis, and Enterocytozoon bieneusi in 386 samples of combined sewer systems from Shanghai, Nanjing and Wuhan and the sewer system in Qingdao in China was determined using PCR-sequencing tools. Eimeria spp. were also genotyped to assess the contribution of domestic animals to Cryptosporidium spp., G. duodenalis, and E. bieneusi in wastewater. The high occurrence of Cryptosporidium spp. (56.2%), G. duodenalis (82.6%), E. bieneusi (87.6%), and Eimeria/ Cyclospora (80.3%) made the source attribution possible. As expected, several human-pathogenic species/genotypes, including Cryptosporidium hominis, Cryptosporidium meleagridis, G. duodenalis sub-assemblage A-II, and E. bieneusi genotype D, were the dominant parasites in wastewater. In addition to humans, the common presence of Cryptosporidium spp. and Eimeria spp. from rodents indicated that rodents might have contributed to the occurrence of E. bieneusi genotype D in samples. Likewise, the finding of Eimeria spp. and Cryptosporidium baileyi from birds indicated that C. meleagridis might be of both human and bird origins.


          The distribution of Cryptosporidium species, G. duodenalis genotypes and subtypes, and E. bieneusi genotypes in urban wastewater indicates that anthroponotic transmission appeared to be important in epidemiology of cryptosporidiosis, giardiasis, and microsporidiosis in the study areas. The finding of different distributions of subtypes between Shanghai and Wuhan was indicative of possible differences in the source of C. hominis among different areas in China.

          Related collections

          Most cited references 38

          • Record: found
          • Abstract: found
          • Article: not found

          Zoonotic potential and molecular epidemiology of Giardia species and giardiasis.

          Molecular diagnostic tools have been used recently in assessing the taxonomy, zoonotic potential, and transmission of Giardia species and giardiasis in humans and animals. The results of these studies have firmly established giardiasis as a zoonotic disease, although host adaptation at the genotype and subtype levels has reduced the likelihood of zoonotic transmission. These studies have also identified variations in the distribution of Giardia duodenalis genotypes among geographic areas and between domestic and wild ruminants and differences in clinical manifestations and outbreak potentials of assemblages A and B. Nevertheless, our efforts in characterizing the molecular epidemiology of giardiasis and the roles of various animals in the transmission of human giardiasis are compromised by the lack of case-control and longitudinal cohort studies and the sampling and testing of humans and animals living in the same community, the frequent occurrence of infections with mixed genotypes and subtypes, and the apparent heterozygosity at some genetic loci for some G. duodenalis genotypes. With the increased usage of multilocus genotyping tools, the development of next-generation subtyping tools, the integration of molecular analysis in epidemiological studies, and an improved understanding of the population genetics of G. duodenalis in humans and animals, we should soon have a better appreciation of the molecular epidemiology of giardiasis, the disease burden of zoonotic transmission, the taxonomy status and virulences of various G. duodenalis genotypes, and the ecology of environmental contamination.
            • Record: found
            • Abstract: found
            • Article: not found

            Unique endemicity of cryptosporidiosis in children in Kuwait.

            To understand the transmission of Cryptosporidium infection in children, fecal specimens from 62 Kuwaiti children with gastrointestinal symptoms found to be positive by microscopy were genotyped and subtyped with a small subunit rRNA-based PCR-restriction fragment length polymorphism analysis and a 60-kDa glycoprotein-based DNA sequencing tool. The median age of infected children was 4.5 years, and 77% of infections occurred during the cool season of November to April. Fifty-eight of the children (94%) had Cryptosporidium parvum, three (5%) had Cryptosporidium hominis, and one (1%) had both C. parvum and C. hominis. Altogether, 13 subtypes of C. parvum (belonging to four subtype allele families) and C. hominis (belonging to three subtype allele families) were observed, with 92% of specimens belonging to the common allele family IIa and the unusual allele family IId. Thus, the transmission of cryptosporidiosis in Kuwaiti children differed significantly from other tropical countries.
              • Record: found
              • Abstract: found
              • Article: not found

              Molecular characterisation of species and genotypes of Cryptosporidium and Giardia and assessment of zoonotic transmission.

              The molecular characterisation of species and genotypes of Cryptosporidium and Giardia is essential for accurately identifying organisms and assessing zoonotic transmission. Results of recent molecular epidemiological studies strongly suggest that zoonotic transmission plays an important role in cryptosporidiosis epidemiology. In such cases the most prevalent zoonotic species is Cryptosporidium parvum. Genotyping and subtyping data suggest that zoonotic transmission is not as prevalent in the epidemiology of giardiasis. Molecular characterisation of Cryptosporidium and Giardia is a relatively recent application that is evolving as new genes are found that increase the accuracy of identification while discovering a greater diversity of species and yet unnamed taxa within these two important genera. As molecular data accumulate, our understanding of the role of zoonotic transmission in epidemiology and clinical manifestations is becoming clearer.

                Author and article information

                Role: Editor
                PLoS Negl Trop Dis
                PLoS Negl Trop Dis
                PLoS Neglected Tropical Diseases
                Public Library of Science (San Francisco, USA )
                September 2012
                6 September 2012
                : 6
                : 9
                [1 ]State Key Laboratory of Bioreactor Engineering, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, People's Republic of China
                [2 ]Division of Foodborne, Waterborne, and Environmental Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
                [3 ]Department of Blood Transfusion, Southwest Hospital, The Third Military Medical University, Chongqing, People's Republic of China
                University of Washington, United States of America
                Author notes

                The authors have declared that no competing interests exist.

                Conceived and designed the experiments: LX YF. Performed the experiments: NL LW XZ LD MG. Analyzed the data: NL LW LL. Contributed reagents/materials/analysis tools: SZ LL. Wrote the paper: NL LX YF.


                This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.

                Page count
                Pages: 11
                This work was supported in part by the National Natural Science Foundation of China (31110103901, 41001316); the National Basic Research Program of China (973 Project) (2011CB200903); Fundamental Research Funds for the Central Universities, China; Open Funding Projects of the State Key Laboratory of Veterinary Etiological Biology at the Lanzhou Veterinary Research Institute and State Key Laboratory of Bioreactor Engineering. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Research Article
                Molecular Epidemiology
                Survey Methods
                Infectious Diseases
                Parasitic Diseases
                Parasitic Intestinal Diseases
                Protozoan Infections

                Infectious disease & Microbiology


                Comment on this article