16
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Characterizing the Human Mycobiota: A Comparison of Small Subunit rRNA, ITS1, ITS2, and Large Subunit rRNA Genomic Targets

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Interest in the human microbiome has increased dramatically in the last decade. However, much of this research has focused on bacteria, while the composition and roles of their fungal counterparts remain less understood. Furthermore, a variety of methodological approaches have been applied, and the comparability between studies is unclear. This study compared four primer pairs targeting the small subunit (SSU) rRNA (18S), ITS1, ITS2, and large subunit (LSU) rRNA (26S) genomic regions for their ability to accurately characterize fungal communities typical of the human mycobiota. All four target regions of 21 individual fungal mock community taxa were capable of being amplified adequately and sequenced. Mixed mock community analyses revealed marked variability in the ability of each primer pair to accurately characterize a complex community. ITS target regions outperformed LSU and SSU. Of the ITS regions, ITS1 failed to generate sequences for Yarrowia lipolytica and all three Malassezia species when in a mixed community. These findings were further supported in studies of human sinonasal and mouse fecal samples. Based on these analyses, previous studies using ITS1, SSU, or LSU markers may omit key taxa that are identified by the ITS2 marker. Of methods commonly used in human mycobiota studies to date, we recommend selection of the ITS2 marker. Further investigation of more recently developed fungal primer options will be essential to ultimately determine the optimal methodological approach by which future human mycobiota studies ought to be standardized.

          Related collections

          Most cited references62

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          ITS as an environmental DNA barcode for fungi: an in silico approach reveals potential PCR biases

          Background During the last 15 years the internal transcribed spacer (ITS) of nuclear DNA has been used as a target for analyzing fungal diversity in environmental samples, and has recently been selected as the standard marker for fungal DNA barcoding. In this study we explored the potential amplification biases that various commonly utilized ITS primers might introduce during amplification of different parts of the ITS region in samples containing mixed templates ('environmental barcoding'). We performed in silico PCR analyses with commonly used primer combinations using various ITS datasets obtained from public databases as templates. Results Some of the ITS primers, such as ITS1-F, were hampered with a high proportion of mismatches relative to the target sequences, and most of them appeared to introduce taxonomic biases during PCR. Some primers, e.g. ITS1-F, ITS1 and ITS5, were biased towards amplification of basidiomycetes, whereas others, e.g. ITS2, ITS3 and ITS4, were biased towards ascomycetes. The assumed basidiomycete-specific primer ITS4-B only amplified a minor proportion of basidiomycete ITS sequences, even under relaxed PCR conditions. Due to systematic length differences in the ITS2 region as well as the entire ITS, we found that ascomycetes will more easily amplify than basidiomycetes using these regions as targets. This bias can be avoided by using primers amplifying ITS1 only, but this would imply preferential amplification of 'non-dikarya' fungi. Conclusions We conclude that ITS primers have to be selected carefully, especially when used for high-throughput sequencing of environmental samples. We suggest that different primer combinations or different parts of the ITS region should be analyzed in parallel, or that alternative ITS primers should be searched for.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            The gut mycobiome of the Human Microbiome Project healthy cohort

            Background Most studies describing the human gut microbiome in healthy and diseased states have emphasized the bacterial component, but the fungal microbiome (i.e., the mycobiome) is beginning to gain recognition as a fundamental part of our microbiome. To date, human gut mycobiome studies have primarily been disease centric or in small cohorts of healthy individuals. To contribute to existing knowledge of the human mycobiome, we investigated the gut mycobiome of the Human Microbiome Project (HMP) cohort by sequencing the Internal Transcribed Spacer 2 (ITS2) region as well as the 18S rRNA gene. Results Three hundred seventeen HMP stool samples were analyzed by ITS2 sequencing. Fecal fungal diversity was significantly lower in comparison to bacterial diversity. Yeast dominated the samples, comprising eight of the top 15 most abundant genera. Specifically, fungal communities were characterized by a high prevalence of Saccharomyces, Malassezia, and Candida, with S. cerevisiae, M. restricta, and C. albicans operational taxonomic units (OTUs) present in 96.8, 88.3, and 80.8% of samples, respectively. There was a high degree of inter- and intra-volunteer variability in fungal communities. However, S. cerevisiae, M. restricta, and C. albicans OTUs were found in 92.2, 78.3, and 63.6% of volunteers, respectively, in all samples donated over an approximately 1-year period. Metagenomic and 18S rRNA gene sequencing data agreed with ITS2 results; however, ITS2 sequencing provided greater resolution of the relatively low abundance mycobiome constituents. Conclusions Compared to bacterial communities, the human gut mycobiome is low in diversity and dominated by yeast including Saccharomyces, Malassezia, and Candida. Both inter- and intra-volunteer variability in the HMP cohort were high, revealing that unlike bacterial communities, an individual’s mycobiome is no more similar to itself over time than to another person’s. Nonetheless, several fungal species persisted across a majority of samples, evidence that a core gut mycobiome may exist. ITS2 sequencing data provided greater resolution of the mycobiome membership compared to metagenomic and 18S rRNA gene sequencing data, suggesting that it is a more sensitive method for studying the mycobiome of stool samples. Electronic supplementary material The online version of this article (10.1186/s40168-017-0373-4) contains supplementary material, which is available to authorized users.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Meta-analysis of gut microbiome studies identifies disease-specific and shared responses

              Hundreds of clinical studies have demonstrated associations between the human microbiome and disease, yet fundamental questions remain on how we can generalize this knowledge. Results from individual studies can be inconsistent, and comparing published data is further complicated by a lack of standard processing and analysis methods. Here we introduce the MicrobiomeHD database, which includes 28 published case–control gut microbiome studies spanning ten diseases. We perform a cross-disease meta-analysis of these studies using standardized methods. We find consistent patterns characterizing disease-associated microbiome changes. Some diseases are associated with over 50 genera, while most show only 10–15 genus-level changes. Some diseases are marked by the presence of potentially pathogenic microbes, whereas others are characterized by a depletion of health-associated bacteria. Furthermore, we show that about half of genera associated with individual studies are bacteria that respond to more than one disease. Thus, many associations found in case–control studies are likely not disease-specific but rather part of a non-specific, shared response to health and disease.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Microbiol
                Front Microbiol
                Front. Microbiol.
                Frontiers in Microbiology
                Frontiers Media S.A.
                1664-302X
                19 September 2018
                2018
                : 9
                : 2208
                Affiliations
                [1] 1School of Biological Sciences, The University of Auckland , Auckland, New Zealand
                [2] 2School of Medicine, The University of Auckland , Auckland, New Zealand
                [3] 3Microbiology Laboratory, LabPLUS, Auckland City Hospital , Auckland, New Zealand
                [4] 4Department of Physiology, Centre for Brain Research, The University of Auckland , Auckland, New Zealand
                [5] 5Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland , Auckland, New Zealand
                Author notes

                Edited by: Ana E. Escalante, Universidad Nacional Autónoma de México, Mexico

                Reviewed by: Zheng Wang, Yale University, United States; Somayeh Dolatabadi, Westerdijk Fungal Biodiversity Institute, Netherlands

                *Correspondence: Michael W. Taylor, mw.taylor@ 123456auckland.ac.nz

                This article was submitted to Microbial Symbioses, a section of the journal Frontiers in Microbiology

                Article
                10.3389/fmicb.2018.02208
                6157398
                30283425
                99aaf8ab-e13f-432f-b29f-f2fa19113083
                Copyright © 2018 Hoggard, Vesty, Wong, Montgomery, Fourie, Douglas, Biswas and Taylor.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 09 June 2018
                : 29 August 2018
                Page count
                Figures: 5, Tables: 1, Equations: 0, References: 96, Pages: 14, Words: 0
                Funding
                Funded by: Garnett Passe and Rodney Williams Memorial Foundation 10.13039/501100003354
                Categories
                Microbiology
                Methods

                Microbiology & Virology
                fungi,human microbiome,microbiota,mycobiota,internal transcribed spacer,next-generation sequencing

                Comments

                Comment on this article